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fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of
physiological and measurement noise. These noise sources are particularly problematic for analysis techniques
that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data
acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy
to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most
studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding
of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap
by comparing data quality and model fitting performance of data acquired during a visual population receptive
field (pRF) mapping (N = 13 participants) experiment after applying one of three preprocessing procedures: ME-
ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected,
multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the
improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal-
to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition,
model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA
resulted in improved variance explained by our pRF model throughout the visual system, including anterior
regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA
did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined
multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising
task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA
may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms.

1. Introduction portant for ensuring accurate and reproducible results in all fMRI stud-
ies.

One promising data acquisition and preprocessing procedure is
multi-echo fMRI (Poser et al., 2006; Posse, 2012) combined with echo-
time (TE) dependent ICA denoising (hereafter referred to collectively as
ME-ICA (Kundu et al., 2017, 2012)). The ME-ICA procedure is described
in detail elsewhere (; DuPre et al., 2021; Evans et al., 2015; Kundu et al.,

Functional MRI data is powerful tool for investigating neu-
ral activity in the human brain, providing a window into brain
organization (Bassett and Sporns, 2017; Buckner et al., 2011;
Bullmore and Sporns, 2012; Busch et al., 2022; Feilong et al., 2021;
Gomez et al., 2019a; Gordon et al., 2017; Gratton et al., 2018;

Huntenburg et al., 2018; Kanwisher et al., 1997; Margulies et al.,
2016; Murphy et al., 2018; Thomas Yeo et al., 2011) and neural
computations (Baldassano et al., 2017; Caucheteux and King, 2022;
Constantinescu et al., 2016; Doeller et al., 2010; Giiglii and van Ger-
ven, 2015; Hasson et al., 2008; Huth et al., 2016; Kriegeskorte et al.,
2008; Lescroart and Gallant, 2019; Popham et al., 2021; Sha et al.,
2015). However, the contribution of non-neuronal noise, such as mo-
tion, heart rate, respiration, and hardware-related artifacts, severely im-
pacts the quality of fMRI data (Bright and Murphy, 2017; Caballero-
Gaudes and Reynolds, 2017; Friston et al., 1996; Liu, 2016). As such,
optimizing data acquisition and preprocessing/denoising is critically im-
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2017, 2012), but in brief, ME-ICA involves two steps. First, during ac-
quisition, researchers acquire multiple TEs at each repetition time (TR),
which are combined to a single optimal time series during preprocessing
(Kundu et al., 2017; Poser et al., 2006). Second, during preprocessing
researchers use ICA to decompose the fMRI signal into multiple sources
(components). These components are then classified as signal and noise
by leveraging the differential decay rate of BOLD-like and non-BOLD
signals across TEs (Evans et al., 2015; Kundu et al., 2012).

In principle, ME-ICA helps to resolve two central limitations of sin-
gle echo fMRI: (i) heterogenous signal quality across the echo pla-
nar image (EPI) volume due to regional variation in the optimal TE
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(Kundu et al., 2017; Poser et al., 2006) and (ii) noise sources that are
not easily differentiable from signal (Kundu et al., 2017). First, be-
cause multiple TEs are collected, an optimal TE can be calculated for
all voxels and synthesized by a weighted combination of the echoes
(Kundu et al., 2012; Poser et al., 2006; Turker et al., 2021). This benefit
is most apparent in regions impacted by susceptibility artifacts, like the
orbital frontal cortex and lateral temporal lobes (Deichmann et al., 2003;
Weiskopf et al., 2007, 2006), where including short echo times greatly
improves signal (Kundu et al., 2017; Poser et al., 2006). Second, ME-
ICA denoising offers a data-driven method for identifying and removing
various noise sources from the neural signal. ME-ICA is particularly ef-
fective for removing physiological noise such as cardiac and respiratory
signals, which can be challenging to model effectively (DuPre et al.,
2021, ; Evans et al., 2015; Kundu et al., 2012; Spreng et al., 2019).
These benefits make multi-echo a promising strategy for data acquisi-
tion, particularly when combined with TE-dependent ICA denoising.

How effective is the ME-ICA procedure at denoising fMRI data? Stud-
ies evaluating ME-ICA have focused largely on its application in resting-
state fMRI, where the underlying neural signal cannot be explicitly mod-
elled. In these studies, ME-ICA reliably identifies known noise sources,
including motion-related artifacts, physiological signals, and thermal
noise, for removal (Kundu et al., 2012). After ME-ICA denoising, studies
typically report significantly greater correlation values among regions
within known functional networks (Cohen et al., 2021; Kundu et al.,
2012; Lynch et al., 2020; Olafsson et al., 2015) and in difficult to im-
age brain areas like the locus coereleus (Turker et al., 2021). However,
because no ‘ground truth’ signal exists in resting-state data, it is chal-
lenging to quantify denoising success. Therefore, resting-state is undesir-
able for evaluating denoising performance for model-based fMRI analy-
sis (e.g., task-fMRI).

Several studies have reported improvements in signal quality after
applying ME-ICA in unique task-based fMRI paradigms. In one study, the
authors showed participants grating stimuli with slowly varying stimu-
lus contrast (Evans et al., 2015). They found that ME-ICA enabled de-
tection of this drifting neural signal, which was not possible using single
echo processing (Evans et al., 2015). Similarly, a second study found that
ME-ICA led to more consistent cardiovascular reactivity mapping during
breath-hold challenges (Moia et al., 2021). More recently, a study found
that ME-ICA improved signal quality when participants performed a ver-
bal report task, which causes unavoidable head motion. However, these
authors did not quantitatively evaluate data quality, but instead evalu-
ated denoising success based upon confirmation of their hypothesis after
ME-ICA was applied but not before (Gilmore et al., 2022). While these
studies demonstrate unique advantages of ME-ICA, they did not report
measures of data quality, such as signal-to-noise or model fit, so it is not
clear whether this benefit would generalize to other task paradigms or
study designs.

Two studies have systematically evaluated the impact of ME-ICA in
typical task-related fMRI experiments. In one study, Gonzalez-Castillo
and colleagues evaluated the benefit of ME-ICA denoising in the con-
text of event-related, block-design, and cardiac-gated fMRI (Gonzalez-
Castillo et al., 2016), and second study by Lombardo and colleagues
considered the impact of ME-ICA on effect size estimates in a men-
talizing task (Lombardo et al., 2016). Both studies found that ME-ICA
benefitted detection of univariate activation (Gonzalez-Castillo et al.,
2016; Lombardo et al., 2016), which was even more pronounced for
cardiac-gated fMRI (Gonzalez-Castillo et al., 2016). While these results
are promising (Gonzalez-Castillo et al., 2016; Lombardo et al., 2016),
it is unclear whether this benefit translates to more complex voxel-wise
models, as well as how ME-ICA affects reliability of parameter estimates.
As such, presently it is unclear whether ME-ICA can recover task-related
signals and classify them as BOLD-like in the context of complex model-
based fMRI experiments (Kundu et al., 2012), or whether these signals
might be erroneously discarded, or, worse, propagated across the brain
because of biased retention of only task-like signal components, poten-
tially leading to false-positive activation.
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Here, we addressed this knowledge gap by quantifying how ME-
ICA affects model-based fMRI analyzes by comparing ME-ICA to both
a minimally pre-processed single echo pipeline and optimally combined
multi-echo fMRI without ICA denoising. We were specifically inter-
ested in comparing ME-ICA versus single echo and optimal combina-
tion with respect to i) data quality, ii) model fitting performance, and
iii) reliability of model parameter estimates. To this end, we leveraged
the well-studied population receptive field (pRF) mapping paradigm
(Amano et al., 2009; Dumoulin and Wandell, 2008; Groen et al.,
2022; Harvey and Dumoulin, 2011; Larsson and Heeger, 2006; Lerma-
Usabiaga et al., 2020; Silson et al., 2016, 2015; Takemura et al., 2012;
Wandell et al., 2007; Wandell and Winawer, 2015; Winawer et al.,
2010). In brief, pRF mapping involves systematic spatiotopic stimula-
tion of the visual field to find the optimal visual receptive field for
each voxel in the brain (Fig. 1) (Dumoulin and Wandell, 2008). The
PRF paradigm is ideal for evaluating the impact of ME-ICA for several
reasons (Lerma-Usabiaga et al., 2020). First, the spatial distribution of
retinotopic coding in the brain is well-described, so this prior knowl-
edge can serve as a basis for evaluating the impact of ME-ICA. Second,
because pRF mapping relies on model fitting, the impact of denoising
can be evaluated by comparing variance explained (R?) across acquisi-
tion and preprocessing protocols. Third, because three pRF parameters
(position (X, Y) and size (sigma)) are estimated from the data, the im-
pact of acquistion and preprocessing protocols on parameter reliability
can be quantified by comparing the parameter estimates from distinct
runs of data. To preview our results, we found that ME-ICA significantly
improved data quality, model fit performance, and parameter estimate
reliability compared to both single echo data and optimal combination
alone.

2. Methods
2.1. Participants

We recruited 13 participants (10 females, mean age=23.23 + 3.5
std) for this study. Participants had normal or corrected-to-normal vi-
sion, were not colorblind, and were free from neurological or psychiatric
conditions. Written consent was obtained from all participants in accor-
dance with the Declaration of Helsinki with a protocol approved by the
Dartmouth College Institutional Review Board and Committee for Pro-
tection of Human Subjects (CPHS).

2.2. Retinotopy

To map population receptive fields (pRFs), we used a paradigm
adapted from Silson et al. (2015) (scene pRF mapping). In brief, we
presented portions of scene images through a bar aperture that moved
in a stepwise fashion through a circular field (diameter=11.4° visual an-
gle). During each 36 s sweep, the bar aperture took 18 evenly spaced
steps every 2 s (1 TR). The bar made eight passes in each run (four ori-
entations, two directions: L-R, BR-TL, T-B, BL-TR, R-L, TL-BR, B-T, and
TR-BL; L: left, R: right, B: Bottom, T: top). During each bar step (1 TR),
we rapidly presented five scene fragments (400 ms per image). All 90
possible scene images were displayed once per sweep, reducing the like-
lihood that participants could mentally “fill in” the underlying image.
To ensure fixation, participants performed a color-detection task at fix-
ation, indicating when the fixation dot changed from white to red via
button press (semi-random, approximately 2 color changes per sweep).
Six runs of pRF data were collected from each participant.

2.3. FMRI

2.3.1. MRI acquisition
All data were collected at Dartmouth College on a Siemens Prisma
3T scanner (Siemens, Erlangen, Germany) equipped with a 32-Channel
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Fig. 1. Population receptive field modeling paradigm. A. Task schematic for pRF mapping: Scene images were flashed through a bar aperture that traversed the visual
field. A single sweep across the visual field took 36 s and consisted of 18 equal time (2 s) and width instances of the aperture. In each run, the aperture completed
eight sweeps (2 orientations, 4 directions). Participants were required to maintain fixation and indicate the detection of a color change at fixation via button press.
Over an entire sweep, 90 scene images (5 x 18 aperture positions) were presented at random without replacement, guaranteeing that no scene was presented twice
within a sweep. This results in a measured timeseries at each fMRI voxel (B). C. To determine the population receptive field for each voxel, a synthetic timeseries is
generated for 400 locations in the visual field (200 x and y positions), and 100 sizes (sigma). This results in 4 million possible timeseries that are fit to each voxel’s
activity (D). This fitting procedure is done separately for ME-ICA, optimally combined, and single echo data. a.u.: Arbitrary units.

head coil. Images were converted from dicom to nifti format using
dem2niix (v1.0.20190902) (Li et al., 2016).

2.3.2. T1 image

For registration purposes, a high-resolution T1-weighted
magnetization-prepared rapid acquisition gradient echo (MPRAGE)
imaging sequence was acquired (TR =2300ms, TE =2.32ms, inversion
time =933 ms, Flip angle =8°, FOV =256 x 256 mm, slices = 255, voxel
size=1 x 1 x 1 mm). T1 images segmented and surfaces were generated
using Freesurfer (Dale et al., 1999; Fischl, 2012; Fischl et al., 2002) (ver-

sion 6.0) and SUMA (Saad and Reynolds, 2012). Anatomical data were
aligned to the fMRI data using AFNI’s (Cox, 1996) align_epi_anat.py and
@SUMA_AlignToExperiment (Saad and Reynolds, 2012).

2.3.3. Functional MRI acquisition

FMRI data were acquired using a multi-echo T2*-weighted se-
quence. The sequence parameters were: TR=2000 ms, TEs=[14.6, 32.84,
51.08], GRAPPA factor=2, Flip angle=70°, FOV=240x192 mm, Ma-
trix size=90x72, slices=52, Multi-band factor=2, voxel size=2.7 mm
isotropic. The initial two frames of data acquisition were discarded by
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Table 1
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Number of components accepted and rejected during ICA-component selection for all participants’ data. Accepted components include all components included in

the final ME-ICA denoised timeseries.

run 1 run 2 run 3 run 4 run 5 run 6 Mean

accepted  rejected  accepted rejected accepted rejected accepted rejected accepted rejected accepted rejected accepted rejected
subj1 31 29 33 32 39 32 39 30 39 27 46 33 32.43 30.50
subj2 29 19 31 22 35 19 36 19 40 23 33 23 290.14 20.83
subj3 26 18 30 15 28 17 29 20 33 19 32 18 25.43 17.83
subj4 37 36 38 42 37 39 44 35 37 28 37 30 32.86 35.00
subj5 38 46 42 40 43 34 36 45 37 44 44 36 34.29 40.83
subj6 34 24 50 19 52 26 46 32 51 25 45 34 39.71 26.67
subj7 30 24 34 19 31 14 25 29 35 25 36 20 27.29 21.83
subj8 33 23 32 32 31 34 34 33 34 28 30 24 27.71 29.00
subj9 29 34 35 24 35 23 36 30 39 27 37 25 30.14 27.17
subjl0 33 33 40 36 41 37 42 36 35 43 37 37 32.57 37.00
subjll 35 25 35 34 34 43 34 35 35 27 35 29 29.71 32.17
subj12 29 19 28 21 29 23 30 23 31 23 30 18 25.29 21.17
subjl3 57 18 50 28 49 32 50 30 51 26 52 26 44.14 26.67
Mean 33.92 26.77 36.77 28.00 37.23 28.69 37.00 30.54 38.23 28.08 38.00 27.15 31.59 28.21

the scanner to allow the signal to reach steady state. The full task com-
prised 144 timepoints.

2.3.4. Preprocessing

Multi-echo data processing was implemented based on the multi-
echo preprocessing pipeline from afni_proc.py in AFNI (version 21.3.10
Trajan) (Cox, 1996). Signal outliers in the data were attenuated (3dDe-
spike) (Jo et al., 2013). Motion correction was calculated based on the
second echo, and these alignment parameters were applied to all runs.
For the single echo procedure, we considered only the middle echo.
For optimally combined and ME-ICA denoised procedures, the optimal
combination of the three echoes was calculated, and the echoes were
combined to form a single, optimally weighted timeseries (T2smap.py,
distributed with tedana.py (DuPre et al., 2021)). ME-ICA was then per-
formed for the ME-ICA denoised data (see below).

Following denoising, all images (single echo, optimally combined,
and ME-ICA denoised) were blurred with a 5 mm gaussian kernel in the
volume (3dBlurInMask), and signals were normalized to percent signal
change. No censoring based on motion was applied.

Multi-echo ICA. The ME-ICA data were denoised using TE-dependent
multi-echo ICA denoising (tedana.py, version 0.0.1 (DuPre et al., 2021,
; Evans et al., 2015; Kundu et al., 2013, 2012)). In brief, PCA was applied
using the PCA function from sk-learn (Pedregosa et al., 2011), and ther-
mal noise was removed using the Kundu-stabilize decision tree method
(Kundu et al., 2013). Subsequently, data was decomposed using ICA,
and the resulting components were classified as signal and noise based
on the known properties of the BOLD versus noise on the T2* signal de-
cay. Components were classified as noise using tedana’s automated clas-
sification with accuracy confirmed via visual inspection. Outputs from
tedana were visually inspected to ensure no task-correlated or BOLD-like
signals were classified as noise component selection. Components classi-
fied as noise were projected out of the data, and remaining components
constituted the denoised timeseries.

The number of components accepted and rejected by ME-ICA for
each subject and run is presented in Table 1.

PRF model. Our goal was to determine the impact of multi-echo fMRI on
encoding model fit and parameter reliability. To this end, we performed
several analyzes that differed in the number of runs averaged together
in time to constitute the timeseries fit by the pRF model. Averaging runs
in the time domain is typical in pRF mapping studies to increase signal-
to-noise of data prior to model fitting (Silson et al., 2016, 2015). The
PRF model implementation used for all analyzes is described below. Un-
less otherwise specified, data presented considered all six runs averaged
together in time.

Data were analyzed using the pRF implementation in AFNI. We de-
scribe the pRF modeling procedure briefly here. For a full description
of the pRF model theory and implementation, see (Dumoulin and Wan-
dell, 2008; Silson et al., 2015). The model estimates pRFs using three
parameters: center position (X and Y) and a size (sigma). Center posi-
tions X and Y are sampled on a cartesian grid with 200 samples across
the width and height of the screen, and 100 evenly spaced FWHM vary-
ing from O to half of the screen width constitute possible pRF sizes
(sigma). These result in 4 million possible pRFs for which the time-
series (i.e., bar positions over time) are estimated and convolved with
the hemodynamic response function. We then find the best fit time-
series for each voxel by minimizing the least-squares error of the pre-
dicted versus actual timeseries (using both Simplex and Powell opti-
mization algorithms). The resulting output contains the best X, Y, and
sigma (pRF size) values for each voxel, as well as the explained variance
(R2). PRF model fitting was conducted in each subject’s original volume
space.

Outputs from the pRF model fitting were subsequently mapped to
the surface after pRF model fitting using AFNI’s 3dVol2Surf.

2.4. ROI definitions

We considered three ROIs known to have retinotopic response prop-
erties (Dumoulin and Wandell, 2008; Silson et al., 2015) to assess model
performance in low and high-level visual areas.

For low level areas we considered early visual cortex, which we
defined anatomically using Glasser parcellation (Glasser et al., 2016)
(visual areas 1-3) defined on the SUMA standard mesh (std.141.)
(Argall et al., 2006; Saad and Reynolds, 2012).

To evaluate model fits in high-level visual areas, in each subject we
independently defined the scene selective areas on the brain’s lateral
(occipital place area; OPA (Dilks et al., 2013)) and ventral (parahip-
pocampal place area; PPA (Epstein and Kanwisher, 1998)) surface.
These regions were established using the same criterion we used in our
prior work (Steel et al., 2021). Participants passively viewed blocks of
scene, face, and object images presented in rapid succession (500 ms
stimulus, 500 ms ISI). Blocks were 24 s long, and each run comprised
12 blocks (4 blocks/condition). There was no interval between blocks.
Participants performed two runs of the scene perception localizer. Scene
and face areas were drawn based on a general linear test comparing the
coefficients of the GLM during scene versus face blocks. These contrast
maps were then transferred to the SUMA standard mesh (std.141) using
@SUMA_Make_Spec_FS and @Suma_AlignToExperiment (Argall et al.,
2006; Saad and Reynolds, 2012). A vertex-wise significance of p < 0.001
along with expected anatomical locations was used to define the regions
of interest (Julian et al., 2012; Steel et al., 2021; Weiner et al., 2018).
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2.5. Data analysis and statistics 3. Results

For ROI-based analyzes, we excluded surface vertices if they failed 3.1. Multi-echo ICA denoising improves temporal signal-to-noise across the

to meet the following criterion in all preprocessing procedures: brain
e R? value greater than 0.1, which is within the typical range for pRF We first sought to determine the impact of ME-ICA on data qual-
mapping studies (Gom.ez et al, .2019?’ 2_019]3; Silson et al., 2016, ity during task fMRI. To this end, we quantified the temporal signal-
2015). We adopted this less St.rICt c.r1ter1a fOI: our ROIbased ana- to-noise (tSNR) of the preprocessed timeseries. We divided the signal
lyzes because of the know1} 1.ret1ntop1.c propert'le.s of these areas an.d average (here, timeseries means) by the standard deviation of the noise
to en.sure that we had s.ufﬁc1ent ver.tlces surviving the threshold in (here, the residual series after PRF estimation). ME-ICA clearly improved
the single echo and optimally combined processed data. tSNR compared to standard preprocessed optimal combined or single
¢ Ce.nFer position (X .and Y value) betw?en '0:95 and 0.95 relative to echo data (Fig. 2). The average tSNR for ME-ICA processed data approx-
minimum and maximum of the Fartesmn grid . imately was 1.6x and 1.3x greater than the single echo and optimally
* Sigma less than 0.95 of the maximum modeled width combined data, respectively (meanz+std tSNR: single echo=167.7 + 44.8,
Because of the non-normal distribution of R? and parameter esti- optimally combined=198 + 42.7, ME-ICA=266.5 + 55). This improve-
mates, for vertex-based analyzes we employed non-parametric statistical ment was due exclusively to a decrease in the standard deviation (de-
tests (Kruskal-Wallis and Wilcoxon rank-sum tests). For across partici- nominator). The optimally combined signal offered a modest improve-
pant analyzes, we used standard parametric tests (ANOVAs). ment compared to single echo. Consistent with the increased signal from

Single echo Optimally combined ME-ICA denoised
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3
]
[
[
T
C
2
2]
©
o
(o}
=
@

0
Mean tSNR: 167.7+44.8 (std) Mean tSNR: 198+42.7 (std) Mean tSNR: 266.5+55.1 (std)
Difference: Optimally combined Difference: ME-ICA denoised
vs Single echo vs Single echo

150 g AN

tSNR improvement vs Single echo ,

Fig. 2. Multi-echo fMRI improves temporal signal-to-noise (tSNR) compared to single echo with minimal preprocessing. We calculated tSNR by taking the mean
signal divided by standard deviation of the residuals after pRF model fitting. The ME-ICA procedure significantly improved tSNR compared to single echo and optimal
combination alone. Upper panel shows whole brain tSNR values. Lower panel shows difference relatively to single echo for (left) optimal combination and (right)
optimal combination + ME-ICA denoising.
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Fig. 3. ME-ICA procedure results in significant improvement in pRF model fits across visual cortex. ME-ICA improved R? by as much as 21%, with the largest
improvements occuring in ventral temporal cortex. The colorbar is scaled equivalently for R> maps across all preprocessing procedures.

the short TE, the improvement from optimal combination was concen-
trated in the ventral medial prefrontal cortex and lateral temporal lobes.

3.2. Multi-echo ICA denoising improves variance explained by the
retinotopic encoding model

The previous result confirmed that ME-ICA denoising and optimal
combination with single echo processing improves tSNR compared to
single echo during task fMRI. But does the improved tSNR translate to
better model fitting? We addressed this question by comparing the R?
values between the three processing strategies.

We found a significant improvement in model fitting after ME-ICA
compared to single echo and optimally combined data (Fig. 3). Interest-
ingly, although optimal combination without ME-ICA denoising yielded
improved tSNR, optimal combination alone offered little improvement
compared to single echo acquisition.

Across the majority of retinotopic cortex, R? was greater for ME-ICA
compared to single echo and optimal combination alone, with differ-
ences as large as 21%. The most pronounced improvement occurred in
ventral occipitotemporal cortex, which we attribute to the tSNR increase
afforded by optimal combination and ME-ICA. Importantly, model fits at
our conservative whole-brain R? threshold (R2 = 0.2) do not extend out-
side of established retinotopic cortex, suggesting that the model fitting
does not arise from an artificial propagation of the task-related signal to
non-retinotopic cortex.

This whole-brain analysis offered a coarse, high-level overview of
the improvement afforded by ME-ICA denoising. To quantify the im-
provement more directly, we examined model fits in three visual ar-
eas with known retinotopic properties: early visual cortex (V1-V3 de-
fined anatomically based on the Glasser parcellation (Glasser et al.,
2016)), as well as two high level visual areas defined functionally in
each individual: parahippocampal place area (PPA; (Epstein and Kan-
wisher, 1998)) on the ventral surface with a upper-field bias, and occip-
ital place area (OPA; (Dilks et al., 2013; Hasson et al., 2003, 2002))
on the lateral surface with a lower-visual field bias (Silson et al.,
2015). Example voxel timeseries in these regions from individual par-

ticipants are shown in Fig. 4, and the distribution of R? values in
these areas from all vertices in all individuals is shown in Fig. 5. The
improvement in R? from ME-ICA is readily apparent in all regions,
and the distributions are significantly different (Early visual cortex
— left hemisphere: X2(2,214,607)=5752.29, p < 0.0001; right hemi-
sphere: X%(2,215,610)=5821.19, p < 0.0001; OPA - left hemisphere:
X2(2,8253)=525.62, p < 0.0001, right hemisphere: X2(2,9422)=527.85,
p<0.0001; PPA — left hemisphere: X2(2,8070)=737.39, p < 0.0001, right
hemisphere: X2(2,8792)=953.55, p < 0.0001). These results demon-
strate that ME-ICA denoising improved model fitting success compared
to both single echo acquisition and optimal combination without ICA-
denoising.

3.3. ME-ICA increases reliability of parameter estimates with limited data

Our analysis of model fitting suggests that ME-ICA denoising offers
substantial improvement in model fitting. However, it is possible that
parameter estimates from ME-ICA are not robust if the components do
not adequately describe the original signal. We investigated the robust-
ness and reliability in two ways. First, to determine whether ME-ICA
denoising preserved the underlying signal, we compared the parameters
estimated from ME-ICA denoised data with parameters estimated from
the optimally combined and single echo data at every supra-threshold
vertex for all subjects. For this analysis, we considered the average of all
six data runs. For simplicity, we considered both hemispheres together.
The statistical results for these correlations are reported in Table 2.

Consistent with ME-ICA preserving the underlying data signal, we
found that pRF parameter estimates were highly correlated in all re-
gions of interest across the preprocessing regimes. In all regions, pRF
center location estimates were correlated across all preprocessing pro-
cedure Figure 6, 7 and 8. Sigma estimates were well-correlated between
ME-ICA compared with optimally combined and single echo data for
early visual cortex and OPA. PPA showed lower correlation between
sigma estimates from ME-ICA with the other procedures This decreased
correlation in PPA was due to a shift towards narrower pRF estimates
(smaller FWHM) after ME-ICA denoising compared with optimally com-
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Fig. 4. Example voxels timeseries from individual participants. The improvement from ME-ICA appears to result from removed high-frequency noise, which is
particularly evident in subject 3 (bottom). gray line depicts the model fit from the denoised timeseries for reference.

bined and single echo data, which could suggest greater precision in pRF
parameter estimates after ME-ICA denoising (van Dijk et al., 2016).

As a second approach to test parameter estimate reliability, we com-
pared the parameter estimates from each single run of data within a
given subject. For each subject, we correlated the run x run parameter
estimates for X, Y, and sigma across all vertices in early visual cortex,
and compared correlation values across the preprocessing techniques.

Higher correlation values indicate greater reliability of parameter es-
timates. We focused on early visual cortex because each run was es-
timated independently, so we were unable to meet our R? threshold
(0.10) for vertices in PPA and OPA after single echo processing in all
subjects. For all three parameters (X, Y, and Sigma) ME-ICA denoising
resulted in improved reliability (See Table 3 for statistical analysis;
Figure 9).
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Fig. 5. Distribution of R? values from early visual cortex (top), occipital place area (middle), and parahippocampaal place area (bottom) across the data processing

procedures. ME-ICA resulted in significantly greater variance explained in all regions.
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The above analysis suggested that ME-ICA results in significantly
greater reliability with limited data. For our final analysis, we inves-
tigated how much R? increased as more data is added. For this analysis,
in each subject we averaged together increasing numbers of pRF data
runs before pRF model fitting (average 1 = run 1, average 2 = runs 1-2,
average 3 = runs 1-3, etc.). We then calculated the average R? by the
PRF model in early visual cortex at each number of averages. We com-
pared these R? values using a repeated measures ANOVA with number
of averages (1-6) and preprocessing procedure (single echo, optimally
combined, ME-ICA) as factors. Regardless of preprocessing, R? improved
with increasing numbers of runs (Main effect of averages: F(5334) = 89,
p < 0.0001; Figure 10). However, the pRF model explained significantly
more variance after ME-ICA compared to the other preprocessing pro-
cedures regardless of number of averages (Main effect of preprocessing:
F(2334) = 76.26, p < 0.0001). We found that even with just a single
run, ME-ICA resulted in R? roughly equivalent to three runs of optimally

combined or single echo data, and just two runs of ME-ICA achieved the
same performance as six runs of the other procedures. This finding is
consistent with findings investigating precision mapping of functional
networks using resting state fMRI (Lynch et al., 2020)).

4. Discussion

Here, we investigated the impact of multi-echo acquisition and TE-
dependent ICA denoising on model-based fMRI analysis. We found that
ME-ICA significantly improved tSNR compared to traditional prepro-
cessing of optimally combined or single echo data resulting from a stan-
dard population receptive field (pRF) mapping paradigm (though op-
timally combining data improved tSNR compared to single echo data,
as well). Compared to single-echo or optimal combination without de-
noising, ME-ICA increased the variance explained by our pRF model
throughout the visual system and improved detection of pRFs in diffi-
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cult to image regions like lateral ventral temporal cortex. ME-ICA also
improved reliability of model parameter estimation. Together, these re-
sults demonstrate that ME-ICA preprocessing offers a significant benefit
for model-based fMRI analyzes.

4.1. ME-ICA improves tSNR and model fitting

As expected, we found that multi-echo fMRI acquisition improved
tSNR. Both ME-ICA denoised and optimally combined data with typi-
cal preprocessing had significantly better tSNR compared to single echo
data. The improvement was most pronounced in ventral temporal and
orbitofrontal cortex because the dropout artifact in these areas was ef-
fectively mitigated at the short TE. This finding largely agrees with pre-
vious studies that compared results using resting state and task data

10

(Gonzalez-Castillo et al., 2016; Kundu et al., 2012; Lombardo et al.,
2016; Lynch et al., 2020; Turker et al., 2021).

Surprisingly, the tSNR boost did not directly translate to improved
model fits. When we compared R? by our retinotopy model across the
preprocessing procedures, we found that the pRF model explained sig-
nificantly more variance in ME-ICA denoised data compared to tradi-
tional preprocessing of optimally combined or single echo data. This
agrees with a resting state investigation (Boyacioglu et al., 2015),
wherein the authors reported a failure to recover known resting state
networks from optimally combined multi-echo data without ICA denois-
ing (in this case, FIX-ICA (Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014)). This finding is important, because one might opt to do multi-
echo acquisition with the goal of improving tSNR but not use ME-ICA
denoising — for example, this procedure is implemented in one widely
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Table 2

Correlation between parameter estimates across preprocess-
ing strategies. EVC: early visual cortex; OPA: occipital place
area; PPA: parahippocampal place area; SE: Single echo; OC:
Optimally combined; DN: ME-ICA denoised.

Parameter Region Preprocessing DF r-value
X
EVC
SExOC 143,405 0.97
SExDN 143,405 0.93
OCxDN 143,405 0.94
OPA
SExOC 5696 0.98
SExDN 5696 0.97
OCxDN 5696 0.97
PPA
SExOC 5326 0.98
SExDN 5326 0.96
OCxDN 5326 0.97
Y
EVC
SExOC 143,405 0.95
SExDN 143,405 0.9
OCxDN 143,405 0.91
OPA
SExOC 5696 0.97
SExDN 5696 0.96
OCxDN 5696 0.95
PPA
SExOC 5326 0.94
SExDN 5326 0.88
OCxDN 5326 0.91
Sigma
EVC
SExOC 143,405 0.92
SExDN 143,405 0.83
OCxDN 143,405 0.86
OPA
SExOC 5696 0.95
SExDN 5696 0.83
OCxDN 5696 0.85
PPA
SExOC 5326 0.82
SExDN 5326 0.64
OCxDN 5326 0.69

Table 3

Comparison between distributions in run x run correlation of parameter values
X, Y, and sigma in early visual cortex. SE: Single echo; OC: Optimally combined;
DN: ME-ICA denoised.

Parameter Statistical test Statistic df p
X
Kruskal-Wallis X?
20.58 21,167 0.001
rank sum z
OCvVSE: -0.2 0.83
DNvVSE: 3.865 0.0001
DNvOC: 3.985 0.0001
Y Kruskall-Wallis X2
39.41 21,167 0.001
rank sum z
OCVSE: 0.1 0.91
DNvVSE: 5.5448 0.0001
DNvOC: 5.3236 0.0001
Sigma
Kruskal-Wallis X?
27.79 21,167 0.001
rank sum z
OCVSE: 0.39 0.695
DNvVSE: 4.815 0.0001
DNvOC: 4.2814 0.0001
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Fig. 10. ME-ICA improves model fitting with limited data. In each subject we
averaged increasing numbers of runs and calculated the average R? in early
visual cortex at each number of averages (average 1 = run 1, average 2 = runs
1-2, average 3 = runs 1-3, etc.). ME-ICA benefitted model fitting at all levels
of data, with just two runs of data needed to achieve the same R? as six single
echo and optimally combined runs.

used preprocessing framework FMRIPREP (Esteban et al., 2018)() (N.B.,
TE-dependent ICA denoising can be implemented separately on data
processed using the FMRIPREP pipeline (DuPre et al., 2021, )). How-
ever, our data suggest that model fitting greatly benefits from ME-ICA
denoising, and that optimal combination without ME-ICA may only be
advantageous compared to single echo acquisition in limited circum-
stances.

The reason for the dissociation between tSNR and model fitting per-
formance after optimal combination alone is not clear. One possibility
is that global noise sources common across all echoes exist in the data,
and so acquiring multiple echoes does not equate to the same benefit
as independent averages (Power et al., 2017). Given that the average
improvement in tSNR did not increase as much as expected (i.e., im-
provement was less than the square root of number of averages), this
seems likely. Additionally, contrast-to-noise ratio is lower in the short
echo times. So, despite improved tSNR in areas with shorter optimal
TEs, these regions may still have suboptimal contrast-to-noise required
for model fitting. Future work should continue examining the relation-
ship between model fitting performance and tSNR.

4.2. ME-ICA improves reliability of model parameter estimation

Beyond RZ2, it is important that preprocessing and analysis
choices lead to reproducible outcomes (Botvinik-Nezer et al., 2020;
Bowring et al., 2019; Lerma-Usabiaga et al., 2020; Soltysik, 2020). In
our study, we leveraged the relative stability of voxel-wise retinotopic
tuning to test whether ME-ICA led to similar parameter estimates from
independent runs of data (van Dijk et al., 2016). We found that ME-
ICA gave highly robust parameter estimates. First, parameters estimated
from ME-ICA data were highly correlated to parameters estimated from
single-echo data. This result suggests that the ICA procedure does not
introduce bias or distort the timeseries signal.

Second, ME-ICA improved the reliability of retinotopy parameter es-
timation from single runs of fMRI data compared to single echo or opti-
mal combination alone. In addition, we found that ME-ICA preprocessed
data led to significantly lower estimates of pRF size compared to tradi-
tional preprocessing, suggesting that ME-ICA may increase the precision
of pRF estimation (van Dijk et al., 2016).
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4.3. Alternative preprocessing strategies

In the present study, we investigated the impact of ME-ICA denois-
ing compared to a traditional, minimal preprocessing pipeline. Specifi-
cally, we sought to quantify the effect of ME-ICA on tSNR, model fitting,
and parameter estimation. Other data-driven denoising techniques us-
ing ICA (e.g., hand classification (Griffanti et al., 2017) or automated
pipelines such as AROMA-ICA (Pruim et al., 2015) or ICA-FIX (Salimi-
Khorshidi et al., 2014)) are highly effective at denoising single echo
fMRI data. Some data suggests that any ICA-denoising strategy is gen-
erally superior to traditional preprocessing. For example, Boyacioglu
and colleagues found that multi-echo acquisition combined with non-
TE dependent ICA significantly benefitted resting state data analysis,
which raises the possibility that ICA denoising may be broadly bene-
ficial (Boyacioglu et al., 2015). Non-TE dependent ICA techniques can
be run on single echo or optimally combined data and thus may be vi-
able preprocessing options if multi-echo acquisition is not possible. In
principle, because TE-dependent ICA incorporates information regard-
ing T2*-signal decay, this strategy should be more effective at isolating
signal and noise components, but such a comparison is outside the scope
of the current work. Future work should consider whether TE-dependent
ICA offers a significant benefit compared to non-TE dependent ICA pre-
processing techniques.

Despite its promise, it is important to note that ICA-based denoising
is not a panacea, and some noise sources remain (and can be worsened)
after ICA-based denoising strategies, including ME-ICA (Power et al.,
2018). Additionally, because ICA is non-deterministic, it can fail to con-
verge or fail to produce high-quality components, so it is important to
check the output from this technique thoroughly. Visual inspection of
components is critically important to ensure that ICA-decomposition
converged, that components were classified as signal or noise appro-
priately, and that task-correlated regressors were not excluded from the
final ME-ICA denoised timeseries.

Our minimal preprocessing included only despiking, motion cor-
rection, smoothing, and scaling, which is similar the pipeline used in
our other retinotopy studies (Silson et al., 2016, 2015). This never-
theless represents just one possible choice among many (Caballero-
Gaudes and Reynolds, 2017; Moia et al., 2021; Power et al., 2017).
It is common in resting state fMRI to remove high-motion time points
from data and to project ‘nuisance regressors’ out of the data prior to
analysis (Ciric et al., 2017; Power et al., 2017; Satterthwaite et al.,
2013), and these approaches are sometimes used to preprocess task-
fMRI data (Caballero-Gaudes and Reynolds, 2017). These techniques,
including CompCor (Behzadi et al., 2007), ANATICOR (Jo et al., 2010),
MotSim (Patriat et al., 2017), and multiple derivatives of motion
(Satterthwaite et al., 2013), can be applied to the single-echo times se-
ries or to the optimally-combined multi-echo acquisition as an alterna-
tive to ICA-based denoising. These correction methods can be highly ef-
fective. For example, one study found that, when imaging at ultra-high
fields, appropriate correction for physiological noise offered approxi-
mately 25% improvement in SNR in visual cortex, which increases to
58% improvement when accounting for motion (Hutton et al., 2011).
These preprocessing strategies have been compared in detail elsewhere
(Ciric et al., 2017; Moia et al., 2021; Power et al., 2017), and an ex-
haustive comparison of preprocessing choices is out of the scope of the
present work (for a comprehensive review see, (Caballero-Gaudes and
Reynolds, 2017)).

Finally, what factors should be considered when choosing multi-echo
versus single echo acquisitions? Our results suggest that multi-echo fMRI
with ICA denoising can yield significant improvements compared to sin-
gle echo acquisition. However, because multi-echo acquisition requires
taking multiple EPI volumes in a single TR, multi-echo generally re-
quires a longer TR than optimized single echo acquisition regimes. Re-
latedly, the sampling duration necessary for super high resolution fMRI
imaging can preclude the use of multi-echo fMRI. While these limita-
tions can be overcome using multi-slice acquisition, in-plane accelera-
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tion, or partial Fourier acquisition, these techniques can result in de-
creased signal-to-noise of the resulting data (Boyacioglu et al., 2015;
Cohen et al., 2021; Tsao and Kozerke, 2012). Indeed, the data we used
for single echo comparison was collected during the multi-echo acquisi-
tion and used both in-plane and multi-slice acceleration to achieve our
desired spatial and temporal resolution. So, it is possible that an op-
timized single-echo fMRI acquisition and effective preprocessing could
achieve similar results to multi-echo. However, because single-echo ac-
quisition requires choosing a specific TE, optimizing for specific brain
areas inherently sacrifices SNR and/or contrast-to-noise in areas with
shorter (or longer) optimal TEs (Kundu et al., 2017; Poser et al., 2006;
Posse, 2012). Therefore, data acquired using a single echo acquisition
may be suboptimal with respect to the homogeneity of SNR across the
brain compared to multi-echo acquisition. In the end, the optimal acqui-
sition and preprocessing procedure for any given study depends on the
research question, as well as the technical, computational, and hardware
resources available.

5. Conclusion

To summarize, we found that ME-ICA improves tSNR and model fit-
ting in task-based fMRI data (pRF mapping) both in terms of variance ex-
plained and regions implicated. Additionally, our findings suggest that
model parameters can be estimated reliably from just a single run of
data after ME-ICA processing. Therefore, ME-ICA may be an attractive
option for naturalistic fMRI experiments where collecting single runs of
fMRI data is common.

Data and code availability

Data and code are available upon request.

Declaration of Competing Interest

The authors declare no conflict of interest.

Credit authorship contribution statement

Adam Steel: Conceptualization, Data curation, Formal analysis,
Writing — original draft, Writing — review & editing. Brenda D. Gar-
cia: Data curation, Software. Edward H. Silson: Software. Caroline E.
Robertson: Conceptualization, Funding acquisition, Supervision, Writ-
ing - review & editing.

Data Availability

Data will be made available on request.

Acknowledgments

We would like to thank Y.B. Choi, Anna Mynick, and Terry Sackett
for assistance with data collection and Eneko Urufiuela and Paul Taylor
for helpful discussion. This work was supported by a grant from NVIDIA
to CER. AS is supported by the Neukom Institute for Computational Sci-
ence.

References

Amano, K., Wandell, B.A., Dumoulin, S.O., 2009. Visual field maps, population receptive
field sizes, and visual field coverage in the human MT+ complex. J. Neurophysiol.
102, 2704-2718. doi:10.1152/JN.00102.2009.

Argall, B.D., Saad, Z.S., Beauchamp, M.S., 2006. Simplified intersubject averaging on the
cortical surface using SUMA. Hum. Brain Mapp. 27, 14-27. doi:10.1002/HBM.20158.

Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., Norman, K.A., 2017. Dis-
covering event structure in continuous narrative perception and memory. Neuron 95,
709-721. doi:10.1016/J.NEURON.2017.06.041, e5.

Bassett, D.S., Sporns, O., 2017. Network neuroscience. Nat. Neurosci. 20, 353-364.
doi:10.1038/NN.4502.


https://doi.org/10.1152/JN.00102.2009
https://doi.org/10.1002/HBM.20158
https://doi.org/10.1016/J.NEURON.2017.06.041
https://doi.org/10.1038/NN.4502

A. Steel, B.D. Garcia, E.H. Silson et al.

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correc-
tion method (CompCor) for BOLD and perfusion based fMRI. Neurolmage 37, 90.
doi:10.1016/J.NEUROIMAGE.2007.04.042.

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., et al., 2020. Variability
in the analysis of a single neuroimaging dataset by many teams. Nature
doi:10.1038/s41586-020-2314-9, 2020 582:7810 582, 84-88.

Bowring, A., Maumet, C., Nichols, T.E., 2019. Exploring the impact of analysis software
on task fMRI results. Hum. Brain Mapp. 40, 3362-3384. doi:10.1002/HBM.24603.

Boyacioglu, R., Schulz, J., Koopmans, P.J., Barth, M., Norris, D.G., 2015. Im-
proved sensitivity and specificity for resting state and task fMRI with multiband
multi-echo EPI compared to multi-echo EPI at 7 T. Neurolmage 119, 352-361.
doi:10.1016/J.NEUROIMAGE.2015.06.089.

Bright, M.G., Murphy, K., 2017. Cleaning up the fMRI time series: mitigating
noise with advanced acquisition and correction strategies. Neurolmage 154, 1-3.
doi:10.1016/J.NEUROIMAGE.2017.03.056.

Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Thomas Yeo, B.T., 2011. The
organization of the human cerebellum estimated by intrinsic functional connectivity.
J. Neurophysiol. 106, 2322-2345. doi:10.1152/JN.00339.2011.

Bullmore, E., Sporns, O., 2012. The economy of brain network organization. Nat. Rev.
Neurosci. 13 (5), 336-349. doi:10.1038/nrn3214, 201213.

Busch, E.L., Rapuano, K.M., Anderson, K., Rosenberg, M.D., Watts, R., Casey, B., Haxby,
J., Feilong, M., 2022. The LEGO theory of the developing functional connectome.
bioRxiv 2022.05.24.493295. doi:10.1101/2022.05.24.493295

Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal.
Neurolmage 154, 128-149. doi:10.1016/J.NEUROIMAGE.2016.12.018.

Caucheteux, C., King, J.R., 2022. Brains and algorithms partially converge in natural
language processing. Commun. Biol. 5 (1), 1-10. doi:10.1038/542003-022-03036-1,
20225.

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T.,
Elliott, M.A., Eickhoff, S.B., Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S., Satterth-
waite, T.D., 2017. Benchmarking of participant-level confound regression strategies
for the control of motion artifact in studies of functional connectivity. Neurolmage
154, 174-187. doi:10.1016/J.NEUROIMAGE.2017.03.020.

Cohen, A.D., Chang, C., Wang, Y., 2021. Using multiband multi-echo imaging to im-
prove the robustness and repeatability of co-activation pattern analysis for dy-
namic functional connectivity. Neurolmage 243. doi:10.1016/J. NEUROIMAGE.2021.
118555.

Constantinescu, A.O., O'Reilly, J.X., Behrens, T.E.J., 2016. Organizing conceptual knowl-
edge in humans with a gridlike code. Science 352, 1464-1468. doi:10.1126/SCI-
ENCE.AAF0941, 1979.

Cox, RW., 1996. AFNIL: software for analysis and visualization of functional
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173.
doi:10.1006/cbmr.1996.0014.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I. Segmentation
and surface reconstruction. Neurolmage 9, 179-194. doi:10.1006/nimg.1998.0395.

Deichmann, R., Gottfried, J.A., Hutton, C., Turner, R., 2003. Optimized EPI
for fMRI studies of the orbitofrontal cortex. Neurolmage 19, 430-441.
doi:10.1016,/51053-8119(03)00073-9.

Dilks, D.D., Julian, J.B., Paunov, A.M., Kanwisher, N., 2013. The occipital place area is
causally and selectively involved in scene perception. J. Neurosci. 33, 1331-1336.
doi:10.1523/JNEUROSCI.4081-12.2013.

Doeller, C.F., Barry, C., Burgess, N., 2010. Evidence for grid cells in a human memory
network. Nature 463, 657-661. doi:10.1038/nature08704.

Dumoulin, S.0., Wandell, B.A., 2008. Population receptive field estimates in human visual
cortex. Neurolmage 39, 647. doi:10.1016/J.NEUROIMAGE.2007.09.034.

DuPre, E., Salo, T., Ahmed, Z., Bandettini, P.A., Bottenhorn, K.L., Caballero-Gaudes, C.,
Dowdle, L.T., Gonzalez-Castillo, J., Heunis, S., Kundu, P., Laird, A.R., Markello, R.,
Markiewicz, C.J., Moia, S., Staden, 1., Teves, J.B., Uruiiuela, E., Vaziri-Pashkam, M.,
Whitaker, K., Handwerker, D.A., 2021. TE-dependent analysis of multi-echo fMRI with
*tedana*. J. Open Source Softw. 6, 3669. doi:10.21105/J0SS.03669.

Epstein, R., Kanwisher, N., 1998. A cortical representation the local visual environment.
Nature 392, 598-601. doi:10.1038/33402.

Esteban, O, Markiewicz, CJ, Blair, RW, Moodie, CA, Isik, Al, Erramuzpe, A, Kent, JD,
Goncalves, M, DuPre, E, Snyder, M, Oya, H, Ghosh, SS, Wright, J, Durnez, J, Pol-
drack, RA, Gorgolewski, KJ, 2018. fMRIPrep: a robust preprocessing pipeline for func-
tional MRI. Nature Methods 16, 111-116. doi:10.1038/541592-018-0235-4.

Evans, J.W., Kundu, P., Horovitz, S.G., Bandettini, P.A., 2015. Separating slow BOLD
from non-BOLD baseline drifts using multi-echo fMRI. Neurolmage 105, 189-197.
doi:10.1016/j.neuroimage.2014.10.051.

Feilong, M., Swaroop Guntupalli, J., Haxby, J.V., 2021. The neural basis of intelligence in
fine-grained cortical topographies. Elife 10. doi:10.7554/ELIFE.64058.

Fischl, B., 2012. FreeSurfer. Neurolmage doi:10.1016/j.neuroimage.2012.01.021.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N.,
Rosen, B., Dale, AM., 2002. Whole brain segmentation: automated label-
ing of neuroanatomical structures in the human brain. Neuron 33, 341-355.
doi:10.1016/50896-6273(02)00569-X.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R., 1996.
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346-355.
doi:10.1002/MRM.1910350312.

Gilmore, A.W., Agron, A.M., Gonzélez-Araya, E.I., Gotts, S.J., Martin, A., 2022. A compar-
ison of single- and multi-echo processing of functional MRI data during overt autobi-
ographical recall. Front. Neurosci. 16. doi:10.3389/FNINS.2022.854387.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugur-
bil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., van Essen, D.C.,

14

Neurolmage 264 (2022) 119723

2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 171-178.
doi:10.1038/nature18933.

Gomez, J., Barnett, M., Grill-Spector, K., 2019a. Extensive childhood experience with
Pokémon suggests eccentricity drives organization of visual cortex. Nat. Hum. Behav.
1. doi:10.1038/541562-019-0592-8, 2019.

Gomez, J., Drain, A., Jeska, B., Natu, V.S., Barnett, M., Grill-Spector, K., 2019b. De-
velopment of population receptive fields in the lateral visual stream improves spa-
tial coding amid stable structural-functional coupling. Neurolmage 188, 59-69.
doi:10.1016/J.NEUROIMAGE.2018.11.056.

Gonzalez-Castillo, J., Panwar, P., Buchanan, L.C., Caballero-Gaudes, C., Handwerker, D.A.,
Jangraw, D.C., Zachariou, V., Inati, S., Roopchansingh, V., Derbyshire, J.A., Bandet-
tini, P.A., 2016. Evaluation of multi-echo ICA denoising for task based fMRI studies:
block designs, rapid event-related designs, and cardiac-gated fMRI. Neurolmage 141,
452-468. doi:10.1016/J. NEUROIMAGE.2016.07.049.

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene,
Berg, J.J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton,
Coalson, R.S., Nguyen, A.L., McDermott, K.B., Shimony, J.S., Snyder, A.Z,
Schlaggar, B.L., Petersen, S.E., Nelson, S.M., Dosenbach, N.U.F., 2017. Pre-
cision functional mapping of individual human brains. Neuron 95, 791-807.
doi:10.1016/J.NEURON.2017.07.011, e7.

Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W.,
Nelson, S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Pe-
tersen, S.E., 2018. Functional brain networks are dominated by stable group
and individual factors, not cognitive or daily variation. Neuron 98, 439-452.
doi:10.1016/J.NEURON.2018.03.035, e5.

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M.F.,
Duff, E.P., Fitzgibbon, S., Westphal, R., Carone, D., Beckmann, C.F., Smith, S.M.,
2017. Hand classification of fMRI ICA noise components. Neurolmage 154, 188-205.
doi:10.1016/J.NEUROIMAGE.2016.12.036.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sex-
ton, C.E., Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., Moeller, S., Xu, J.,
Yacoub, E., Baselli, G., Ugurbil, K., Miller, K.L., Smith, S.M., 2014. ICA-based artefact
removal and accelerated fMRI acquisition for improved resting state network imaging.
Neurolmage 95, 232-247. doi:10.1016/j.neuroimage.2014.03.034.

Groen, LILA., Dekker, T.M., Knapen, T., Silson, E.H., 2022. Visuospatial coding
as ubiquitous scaffolding for human cognition. Trends Cogn. Sci. 26, 81-96.
doi:10.1016/J.TICS.2021.10.011.

Giiglii, U., van Gerven, M.A.J., 2015. Deep neural networks reveal a gradient in the com-
plexity of neural representations across the ventral stream. J. Neurosci. 35, 10005
10014. doi:10.1523/JNEUROSCI.5023-14.2015.

Harvey, B.M., Dumoulin, S.0., 2011. The Relationship between cortical magnification fac-
tor and population receptive field size in human visual cortex: constancies in cortical
architecture. J. Neurosci. 31, 13604-13612. doi:10.1523/JNEUROSCI.2572-11.2011.

Hasson, U., Furman, O., Clark, D., Dudai, Y., Davachi, L., 2008. Enhanced intersubject cor-
relations during movie viewing correlate with successful episodic encoding. Neuron
57, 452-462. doi:10.1016/J.NEURON.2007.12.009.

Hasson, U., Harel, M., Levy, 1., Malach, R., 2003. Large-scale mirror-symmetry or-
ganization of human occipito-temporal object areas. Neuron 37, 1027-1041.
doi:10.1016/50896-6273(03)00144-2.

Hasson, U., Levy, 1., Behrmann, M., Hendler, T., Malach, R., 2002. Eccentricity bias as
an organizing principle for human high-order object areas. Neuron 34, 479-490.
doi:10.1016,/50896-6273(02)00662-1.

Huntenburg, J.M., Bazin, P.L., Margulies, D.S., 2018. Large-scale gradients in human cor-
tical organization. Trends Cogn. Sci. 22, 21-31. doi:10.1016/J.TICS.2017.11.002.
Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural
speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453

458. doi:10.1038/NATURE17637.

Hutton, C., Josephs, O., Stadler, J., Featherstone, E., Reid, A., Speck, O., Bernarding, J.,
Weiskopf, N., 2011. The impact of physiological noise correction on fMRI at 7 T.
Neurolmage 57, 101. doi:10.1016/J.NEUROIMAGE.2011.04.018.

Jo, H.J., Gotts, S.J., Reynolds, R.C., Bandettini, P.A., Martin, A., Cox, R.W., Saad, Z.S.,
2013. Effective preprocessing procedures virtually eliminate distance-dependent mo-
tion artifacts in resting state FMRI. J. Appl. Math. doi:10.1155/2013/935154, 2013.

Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A., Cox, R.W., 2010. Mapping sources of
correlation in resting state FMRI, with artifact detection and removal. Neurolmage
52, 571-582. doi:10.1016/J.NEUROIMAGE.2010.04.246.

Julian, J.B., Fedorenko, E., Webster, J., Kanwisher, N., 2012. An algorithmic method
for functionally defining regions of interest in the ventral visual pathway.
doi:10.1016/j.neuroimage.2012.02.055

Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: a module in
human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302-4311.
doi:10.1523/jneurosci.17-11-04302.1997.

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H.,
Tanaka, K., Bandettini, P.A.,, 2008. Matching categorical object representa-
tions in inferior temporal cortex of man and monkey. Neuron 60, 1126-1141.
doi:10.1016/J.NEURON.2008.10.043.

Kundu, P., Brenowitz, N.D., Voon, V., Worbe, Y., Vértes, P.E., Inati, S.J., Saad, Z.S., Ban-
dettini, P.A., Bullmore, E.T., 2013. Integrated strategy for improving functional con-
nectivity mapping using multiecho fMRI. Proc. Natl. Acad. Sci. U. S. A. 110, 16187—
16192. doi:10.1073/PNAS.1301725110/SUPPL_FILE/PNAS.201301725SI.PDF.

Kundu, P., Inati, S.J., Evans, J.W., Luh, W.M., Bandettini, P.A., 2012. Differentiating BOLD
and non-BOLD signals in fMRI time series using multi-echo EPI. Neurolmage 60,
1759-1770. doi:10.1016/j.neuroimage.2011.12.028.

Kundu, P., Voon, V., Balchandani, P., Lombardo, M.v., Poser, B.A., Bandettini, P.A., 2017.
Multi-echo fMRI: a review of applications in fMRI denoising and analysis of BOLD
signals. Neurolmage 154, 59-80. doi:10.1016/J.NEUROIMAGE.2017.03.033.

D.J.,
JM,,


https://doi.org/10.1016/J.NEUROIMAGE.2007.04.042
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1002/HBM.24603
https://doi.org/10.1016/J.NEUROIMAGE.2015.06.089
https://doi.org/10.1016/J.NEUROIMAGE.2017.03.056
https://doi.org/10.1152/JN.00339.2011
https://doi.org/10.1038/nrn3214
https://doi.org/10.1016/J.NEUROIMAGE.2016.12.018
https://doi.org/10.1038/s42003-022-03036-1
https://doi.org/10.1016/J.NEUROIMAGE.2017.03.020
https://doi.org/10.1016/J.NEUROIMAGE.2021.\penalty -\@M 118555
https://doi.org/10.1126/SCIENCE.AAF0941
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1016/S1053-8119(03)00073-9
https://doi.org/10.1523/JNEUROSCI.4081-12.2013
https://doi.org/10.1038/nature08704
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.034
https://doi.org/10.21105/JOSS.03669
https://doi.org/10.1038/33402
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.neuroimage.2014.10.051
https://doi.org/10.7554/ELIFE.64058
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1002/MRM.1910350312
https://doi.org/10.3389/FNINS.2022.854387
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/s41562-019-0592-8
https://doi.org/10.1016/J.NEUROIMAGE.2018.11.056
https://doi.org/10.1016/J.NEUROIMAGE.2016.07.049
https://doi.org/10.1016/J.NEURON.2017.07.011
https://doi.org/10.1016/J.NEURON.2018.03.035
https://doi.org/10.1016/J.NEUROIMAGE.2016.12.036
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/J.TICS.2021.10.011
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1523/JNEUROSCI.2572-11.2011
https://doi.org/10.1016/J.NEURON.2007.12.009
https://doi.org/10.1016/S0896-6273(03)00144-2
https://doi.org/10.1016/S0896-6273(02)00662-1
https://doi.org/10.1016/J.TICS.2017.11.002
https://doi.org/10.1038/NATURE17637
https://doi.org/10.1016/J.NEUROIMAGE.2011.04.018
https://doi.org/10.1155/2013/935154
https://doi.org/10.1016/J.NEUROIMAGE.2010.04.246
https://doi.org/10.1523/jneurosci.17-11-04302.1997
https://doi.org/10.1016/J.NEURON.2008.10.043
https://doi.org/10.1073/PNAS.1301725110/SUPPL_FILE/PNAS.201301725SI.PDF
https://doi.org/10.1016/j.neuroimage.2011.12.028
https://doi.org/10.1016/J.NEUROIMAGE.2017.03.033

A. Steel, B.D. Garcia, E.H. Silson et al.

Larsson, J., Heeger, D.J., 2006. Two retinotopic visual areas in human lateral occipital
cortex. J. Neurosci. 26, 13128-13142. doi:10.1523/JNEUROSCIL.1657-06.2006.
Lerma-Usabiaga, G., Benson, N., Winawer, J., Wandell, B.A., 2020. A validation framework
for neuroimaging software: the case of population receptive fields. PLoS Comput. Biol.

16, €1007924. doi:10.1371/JOURNAL.PCBI.1007924.

Lescroart, M.D., Gallant, J.L., 2019. Human scene-selective areas represent 3D configura-
tions of surfaces. Neuron 101, 178-192. doi:10.1016/J.NEURON.2018.11.004, €7.

Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C., 2016. The first step for neu-
roimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47—
56. d0i:10.1016/j.jneumeth.2016.03.001.

Liu, T.T., 2016. Noise contributions to the fMRI signal: an overview. Neurolmage 143,
141-151. doi:10.1016/J.NEUROIMAGE.2016.09.008.

Lombardo, M.v., Auyeung, B., Holt, R.J., Waldman, J., Ruigrok, A.N.V., Mooney, N.,
Bullmore, E.T., Baron-Cohen, S., Kundu, P., 2016. Improving effect size esti-
mation and statistical power with multi-echo fMRI and its impact on under-
standing the neural systems supporting mentalizing. Neurolmage 142, 55-66.
doi:10.1016/J.NEUROIMAGE.2016.07.022.

Lynch, C.J., Power, J.D., Scult, M.A., Dubin, M., Gunning, F.M., Liston, C., 2020. Rapid pre-
cision functional mapping of individuals using multi-echo fMRI. Cell Rep. 33, 108540.
doi:10.1016/J.CELREP.2020.108540.

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G.,
Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Small-
wood, J., 2016. Situating the default-mode network along a principal gradient of
macroscale cortical organization. Proc. Natl. Acad. Sci. U. S. A. 113, 12574-12579.
doi:10.1073/PNAS.1608282113/SUPPL_FILE/PNAS.201608282SI.PDF.

Moia, S., Termenon, M., Uruiiuela, E., Chen, G., Stickland, R.C., Bright, M.G., Caballero-
Gaudes, C., 2021. ICA-based denoising strategies in breath-hold induced cerebrovas-
cular reactivity mapping with multi echo BOLD fMRI. Neurolmage 233, 117914.
doi:10.1016/J.NEUROIMAGE.2021.117914.

Murphy, C., Jefferies, E., Rueschemeyer, S.-.A., Sormaz, M., Wang, H., Margulies, D.S.,
Smallwood, J., 2018. Distant from input: evidence of regions within the default mode
network supporting perceptually-decoupled and conceptually-guided cognition. Neu-
rolmage 171, 393-401. doi:10.1016/J.NEUROIMAGE.2018.01.017.

Olafsson, V., Kundu, P., Wong, E.C., Bandettini, P.A., Liu, T.T., 2015. En-
hanced identification of BOLD-like components with multi-echo simultane-
ous multi-slice (MESMS) fMRI and multi-echo ICA. Neurolmage 112, 43-51.
doi:10.1016/J.NEUROIMAGE.2015.02.052.

Patriat, R., Reynolds, R.C.,, Birn, R.M.,
motion-related  signal changes in
doi:10.1016/J.NEUROIMAGE.2016.08.051.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning
in python. J. Mach. Learn. Res. 12, 2825-2830.

Popham, S.F., Huth, A.G., Bilenko, N.Y., Deniz, F., Gao, J.S., Nunez-Elizalde, A.O.,
Gallant, J.L., 2021. Visual and linguistic semantic representations are aligned
at the border of human visual cortex. Nat. Neurosci. 24 (11), 1628-1636.
doi:10.1038/541593-021-00921-6, 202124.

Poser, B.A., Versluis, M.J.,, Hoogduin, J.M., Norris, D.G., 2006. BOLD contrast
sensitivity enhancement and artifact reduction with multiecho EPI: parallel-
acquired inhomogeneity-desensitized fMRI. Magn. Reson. Med. 55, 1227-1235.
doi:10.1002/mrm.20900.

Posse, S., 2012. Multi-echo  acquisition.
doi:10.1016/J.NEUROIMAGE.2011.10.057.
Power, J.D., Plitt, M., Gotts, S.J., Kundu, P., Voon, V., Bandettini, P.A., Martin, A., 2018.
Ridding fMRI data of motion-related influences: removal of signals with distinct spa-
tial and physical bases in multiecho data. Proc. Natl. Acad. Sci. U. S. A. 115, E2105-
E2114. doi:10.1073/PNAS.1720985115/SUPPL _FILE/PNAS.1720985115.SAPP.PDF.

Power, J.D., Plitt, M., Laumann, T.O., Martin, A., 2017. Sources and impli-
cations of whole-brain fMRI signals in humans. Neurolmage 146, 609-625.
doi:10.1016/J.NEUROIMAGE.2016.09.038.

Pruim, R.H.R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J.K., Beckmann, C.F., 2015.
ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI
data. NeuroIlmage 112, 267-277. d0i:10.1016/J.NEUROIMAGE.2015.02.064.

2017.
fMRI.

An improved model of
Neurolmage 144, 74-82.

Neurolmage 62, 665-671.

15

Neurolmage 264 (2022) 119723

Saad, Z.S., Reynolds, R.C., 2012. SUMA.
do0i:10.1016/J.NEUROIMAGE.2011.09.016.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.,
2014. Automatic denoising of functional MRI data: combining independent com-
ponent analysis and hierarchical fusion of classifiers. Neurolmage 90, 449-468.
doi:10.1016/J.NEUROIMAGE.2013.11.046.

Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E.,
Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H., 2013. An improved
framework for confound regression and filtering for control of motion artifact in the
preprocessing of resting-state functional connectivity data. Neurolmage 64, 240-256.
doi:10.1016/J.NEUROIMAGE.2012.08.052.

Sha, L., Haxby, J.v., Abdi, H., Swaroop Guntupalli, J., Oosterhof, N.N., Halchenko, Y.O.,
Connolly, A.C., 2015. The animacy continuum in the human ventral vision pathway.
J. Cogn. Neurosci. 27, 665-678. doi:10.1162/jocn_a_00733.

Silson, E.H., Chan, A.W.Y., Reynolds, R.C., Kravitz, D.J., Baker, C.I., 2015. A retino-
topic basis for the division of high-level scene processing between lateral and ventral
human occipitotemporal cortex. J. Neurosci. 35, 11921-11935. doi:10.1523/JNEU-
ROSCI.0137-15.2015.

Silson, E.H., Steel, A.D., Baker, C.I., 2016. Scene-selectivity and retinotopy in medial pari-
etal cortex. Front. Hum. Neurosci. 10, 412. doi:10.3389/fnhum.2016.00412.

Soltysik, D.A., 2020. Optimizing data processing to improve the reproducibil-
ity of single-subject functional magnetic resonance imaging. Brain Behav. 10.
doi:10.1002/BRB3.1617.

Spreng, R.N., Fernandez-Cabello, S., Turner, G.R., Stevens, W.D., 2019. Take a deep
breath: multiecho fMRI denoising effectively removes head motion artifacts, obviating
the need for global signal regression. Proc. Natl. Acad. Sci. U. S. A. 116, 19241-19242.
doi:10.1073/PNAS.1909848116.

Steel, A., Billings, M.M., Silson, E.H., Robertson, C.E., 2021. A network linking scene per-
ception and spatial memory systems in posterior cerebral cortex. Nat. Commun. 12
(1), 1-13. doi:10.1038/s41467-021-22848-z, 202112.

Takemura, H., Ashida, H., Amano, K., Kitaoka, A., Murakami, I., 2012. Neural correlates
of induced motion perception in the human brain. J. Neurosci. 32, 14344-14354.
doi:10.1523/JNEUROSCI.0570-12.2012.

Thomas, B.T.Y., Krienen, F.M., Sepulcre, J., et al., 2011. The organization of the human
cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106,
1125-1165. doi:10.1152/JN.00338.2011.

Tsao, J., Kozerke, S., 2012. MRI temporal acceleration techniques. J. Magn. Reson. Imag-
ing 36, 543-560. doi:10.1002/JMRI.23640.

Turker, H.B., Riley, E., Luh, W.M., Colcombe, S.J., Swallow, K.M., 2021. Estimates of
locus coeruleus function with functional magnetic resonance imaging are influenced
by localization approaches and the use of multi-echo data. Neurolmage 236, 118047.
doi:10.1016/J.NEUROIMAGE.2021.118047.

van Dijk, J.A., de Haas, B., Moutsiana, C., Schwarzkopf, D.S., 2016. Intersession
reliability of population receptive field estimates. Neurolmage 143, 293-303.
do0i:10.1016/J.NEUROIMAGE.2016.09.013.

Wandell, B.A., Dumoulin, S.0., Brewer, A.A., 2007. Visual field maps in human cortex.
Neuron 56, 366-383. d0i:10.1016/J.NEURON.2007.10.012.

Wandell, B.A., Winawer, J., 2015. Computational neuroimaging and population receptive
fields. Trends Cogn. Sci. 19, 349-357. doi:10.1016/J.TICS.2015.03.009.

Weiner, K.S., Barnett, M.A., Witthoft, N., Golarai, G., Stigliani, A., Kay, K.N., Gomez, J.,
Natu, V.S., Amunts, K., Zilles, K., Grill-Spector, K., 2018. Defining the most probable
location of the parahippocampal place area using cortex-based alignment and cross-
validation. Neurolmage 170, 373-384. doi:10.1016/j.neuroimage.2017.04.040.

Weiskopf, N., Hutton, C., Josephs, O., Deichmann, R., 2006. Optimal EPI parameters for
reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at
3 Tand 1.5 T. Neurolmage 33, 493-504. doi:10.1016/J.NEUROIMAGE.2006.07.029.

Weiskopf, N., Hutton, C., Josephs, O., Turner, R., Deichmann, R., 2007. Optimized EPI
for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced
gradients in the readout direction. MAGMA 20, 39. doi:10.1007/510334-006-0067-6.

Winawer, J., Horiguchi, H., Sayres, R.A., Amano, K., Wandell, B.A., 2010. Mapping hV4
and ventral occipital cortex: the venous eclipse. J. Vis. 10, 1. doi:10.1167/10.5.1.

Neurolmage 62, 768-773.


https://doi.org/10.1523/JNEUROSCI.1657-06.2006
https://doi.org/10.1371/JOURNAL.PCBI.1007924
https://doi.org/10.1016/J.NEURON.2018.11.004
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.008
https://doi.org/10.1016/J.NEUROIMAGE.2016.07.022
https://doi.org/10.1016/J.CELREP.2020.108540
https://doi.org/10.1073/PNAS.1608282113/SUPPL_FILE/PNAS.201608282SI.PDF
https://doi.org/10.1016/J.NEUROIMAGE.2021.117914
https://doi.org/10.1016/J.NEUROIMAGE.2018.01.017
https://doi.org/10.1016/J.NEUROIMAGE.2015.02.052
https://doi.org/10.1016/J.NEUROIMAGE.2016.08.051
http://refhub.elsevier.com/S1053-8119(22)00844-8/sbref0071
https://doi.org/10.1038/s41593-021-00921-6
https://doi.org/10.1002/mrm.20900
https://doi.org/10.1016/J.NEUROIMAGE.2011.10.057
https://doi.org/10.1073/PNAS.1720985115/SUPPL_FILE/PNAS.1720985115.SAPP.PDF
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.038
https://doi.org/10.1016/J.NEUROIMAGE.2015.02.064
https://doi.org/10.1016/J.NEUROIMAGE.2011.09.016
https://doi.org/10.1016/J.NEUROIMAGE.2013.11.046
https://doi.org/10.1016/J.NEUROIMAGE.2012.08.052
https://doi.org/10.1162/jocn_a_00733
https://doi.org/10.1523/JNEUROSCI.0137-15.2015
https://doi.org/10.3389/fnhum.2016.00412
https://doi.org/10.1002/BRB3.1617
https://doi.org/10.1073/PNAS.1909848116
https://doi.org/10.1038/s41467-021-22848-z
https://doi.org/10.1523/JNEUROSCI.0570-12.2012
https://doi.org/10.1152/JN.00338.2011
https://doi.org/10.1002/JMRI.23640
https://doi.org/10.1016/J.NEUROIMAGE.2021.118047
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.013
https://doi.org/10.1016/J.NEURON.2007.10.012
https://doi.org/10.1016/J.TICS.2015.03.009
https://doi.org/10.1016/j.neuroimage.2017.04.040
https://doi.org/10.1016/J.NEUROIMAGE.2006.07.029
https://doi.org/10.1007/S10334-006-0067-6
https://doi.org/10.1167/10.5.1

	Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Retinotopy
	2.3 FMRI
	2.3.1 MRI acquisition
	2.3.2 T1 image
	2.3.3 Functional MRI acquisition
	2.3.4 Preprocessing

	2.4 ROI definitions
	2.5 Data analysis and statistics

	3 Results
	3.1 Multi-echo ICA denoising improves temporal signal-to-noise across the brain
	3.2 Multi-echo ICA denoising improves variance explained by the retinotopic encoding model
	3.3 ME-ICA increases reliability of parameter estimates with limited data

	4 Discussion
	4.1 ME-ICA improves tSNR and model fitting
	4.2 ME-ICA improves reliability of model parameter estimation
	4.3 Alternative preprocessing strategies

	5 Conclusion
	Data and code availability
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	References


