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a b s t r a c t 

fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by multiple sources of 
physiological and measurement noise. These noise sources are particularly problematic for analysis techniques 
that require high signal-to-noise ratio for stable model fitting, such as voxel-wise modeling. Multi-echo data 
acquisition in combination with echo-time dependent ICA denoising (ME-ICA) represents one promising strategy 
to mitigate physiological and hardware-related noise sources as well as motion-related artifacts. However, most 
studies employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited understanding 
of the impact of ME-ICA on complex task or model-based fMRI paradigms. Here, we addressed this knowledge gap 
by comparing data quality and model fitting performance of data acquired during a visual population receptive 
field (pRF) mapping ( N = 13 participants) experiment after applying one of three preprocessing procedures: ME- 
ICA, optimally combined multi-echo data without ICA-denoising, and typical single echo processing. As expected, 
multi-echo fMRI improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the 
improvement compared to optimal combination alone. However, unexpectedly, this boost in temporal signal- 
to-noise did not directly translate to improved model fitting performance: compared to single echo acquisition, 
model fitting was only improved after ICA-denoising. Specifically, compared to single echo acquisition, ME-ICA 

resulted in improved variance explained by our pRF model throughout the visual system, including anterior 
regions of the temporal and parietal lobes where SNR is typically low, while optimal combination without ICA 

did not. ME-ICA also improved reliability of parameter estimates compared to single echo and optimally combined 
multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA is effective for denoising 
task-based fMRI data for modeling analyzes and maintains the integrity of the original data. Therefore, ME-ICA 

may be beneficial for complex fMRI experiments, including voxel-wise modeling and naturalistic paradigms. 
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. Introduction 

Functional MRI data is powerful tool for investigating neu-
al activity in the human brain, providing a window into brain
rganization ( Bassett and Sporns, 2017 ; Buckner et al., 2011 ;
ullmore and Sporns, 2012 ; Busch et al., 2022 ; Feilong et al., 2021 ;
omez et al., 2019a ; Gordon et al., 2017 ; Gratton et al., 2018 ;
untenburg et al., 2018 ; Kanwisher et al., 1997 ; Margulies et al.,
016 ; Murphy et al., 2018 ; Thomas Yeo et al., 2011 ) and neural
omputations ( Baldassano et al., 2017 ; Caucheteux and King, 2022 ;
onstantinescu et al., 2016 ; Doeller et al., 2010 ; Güçlü and van Ger-
en, 2015 ; Hasson et al., 2008 ; Huth et al., 2016 ; Kriegeskorte et al.,
008 ; Lescroart and Gallant, 2019 ; Popham et al., 2021 ; Sha et al.,
015 ). However, the contribution of non-neuronal noise, such as mo-
ion, heart rate, respiration, and hardware-related artifacts, severely im-
acts the quality of fMRI data ( Bright and Murphy, 2017 ; Caballero-
audes and Reynolds, 2017 ; Friston et al., 1996 ; Liu, 2016 ). As such,
ptimizing data acquisition and preprocessing/denoising is critically im-
∗ Corresponding author. 
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ortant for ensuring accurate and reproducible results in all fMRI stud-
es. 

One promising data acquisition and preprocessing procedure is
ulti-echo fMRI ( Poser et al., 2006 ; Posse, 2012 ) combined with echo-

ime (TE) dependent ICA denoising (hereafter referred to collectively as
E-ICA ( Kundu et al., 2017 , 2012 )). The ME-ICA procedure is described

n detail elsewhere (; DuPre et al., 2021; Evans et al., 2015 ; Kundu et al.,
017 , 2012 ), but in brief, ME-ICA involves two steps. First, during ac-
uisition, researchers acquire multiple TEs at each repetition time (TR),
hich are combined to a single optimal time series during preprocessing
 Kundu et al., 2017 ; Poser et al., 2006 ). Second, during preprocessing
esearchers use ICA to decompose the fMRI signal into multiple sources
components). These components are then classified as signal and noise
y leveraging the differential decay rate of BOLD-like and non-BOLD
ignals across TEs ( Evans et al., 2015 ; Kundu et al., 2012 ). 

In principle, ME-ICA helps to resolve two central limitations of sin-
le echo fMRI: (i) heterogenous signal quality across the echo pla-
ar image (EPI) volume due to regional variation in the optimal TE
tober 2022 
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3  
 Kundu et al., 2017 ; Poser et al., 2006 ) and (ii) noise sources that are
ot easily differentiable from signal ( Kundu et al., 2017 ). First, be-
ause multiple TEs are collected, an optimal TE can be calculated for
ll voxels and synthesized by a weighted combination of the echoes
 Kundu et al., 2012 ; Poser et al., 2006 ; Turker et al., 2021 ). This benefit
s most apparent in regions impacted by susceptibility artifacts, like the
rbital frontal cortex and lateral temporal lobes ( Deichmann et al., 2003 ;
eiskopf et al., 2007 , 2006 ), where including short echo times greatly

mproves signal ( Kundu et al., 2017 ; Poser et al., 2006 ). Second, ME-
CA denoising offers a data-driven method for identifying and removing
arious noise sources from the neural signal. ME-ICA is particularly ef-
ective for removing physiological noise such as cardiac and respiratory
ignals, which can be challenging to model effectively ( DuPre et al.,
021 , ; Evans et al., 2015 ; Kundu et al., 2012 ; Spreng et al., 2019 ).
hese benefits make multi-echo a promising strategy for data acquisi-
ion, particularly when combined with TE-dependent ICA denoising. 

How effective is the ME-ICA procedure at denoising fMRI data? Stud-
es evaluating ME-ICA have focused largely on its application in resting-
tate fMRI, where the underlying neural signal cannot be explicitly mod-
lled. In these studies, ME-ICA reliably identifies known noise sources,
ncluding motion-related artifacts, physiological signals, and thermal
oise, for removal ( Kundu et al., 2012 ). After ME-ICA denoising, studies
ypically report significantly greater correlation values among regions
ithin known functional networks ( Cohen et al., 2021 ; Kundu et al.,
012 ; Lynch et al., 2020 ; Olafsson et al., 2015 ) and in difficult to im-
ge brain areas like the locus coereleus ( Turker et al., 2021 ). However,
ecause no ‘ground truth’ signal exists in resting-state data, it is chal-
enging to quantify denoising success. Therefore, resting-state is undesir-
ble for evaluating denoising performance for model-based fMRI analy-
is (e.g., task-fMRI). 

Several studies have reported improvements in signal quality after
pplying ME-ICA in unique task-based fMRI paradigms. In one study, the
uthors showed participants grating stimuli with slowly varying stimu-
us contrast ( Evans et al., 2015 ). They found that ME-ICA enabled de-
ection of this drifting neural signal, which was not possible using single
cho processing ( Evans et al., 2015 ). Similarly, a second study found that
E-ICA led to more consistent cardiovascular reactivity mapping during

reath-hold challenges ( Moia et al., 2021 ). More recently, a study found
hat ME-ICA improved signal quality when participants performed a ver-
al report task, which causes unavoidable head motion. However, these
uthors did not quantitatively evaluate data quality, but instead evalu-
ted denoising success based upon confirmation of their hypothesis after
E-ICA was applied but not before ( Gilmore et al., 2022 ). While these

tudies demonstrate unique advantages of ME-ICA, they did not report
easures of data quality, such as signal-to-noise or model fit, so it is not

lear whether this benefit would generalize to other task paradigms or
tudy designs. 

Two studies have systematically evaluated the impact of ME-ICA in
ypical task-related fMRI experiments. In one study, Gonzalez-Castillo
nd colleagues evaluated the benefit of ME-ICA denoising in the con-
ext of event-related, block-design, and cardiac-gated fMRI ( Gonzalez-
astillo et al., 2016 ), and second study by Lombardo and colleagues
onsidered the impact of ME-ICA on effect size estimates in a men-
alizing task ( Lombardo et al., 2016 ). Both studies found that ME-ICA
enefitted detection of univariate activation ( Gonzalez-Castillo et al.,
016 ; Lombardo et al., 2016 ), which was even more pronounced for
ardiac-gated fMRI ( Gonzalez-Castillo et al., 2016 ). While these results
re promising ( Gonzalez-Castillo et al., 2016 ; Lombardo et al., 2016 ),
t is unclear whether this benefit translates to more complex voxel-wise
odels, as well as how ME-ICA affects reliability of parameter estimates.
s such, presently it is unclear whether ME-ICA can recover task-related
ignals and classify them as BOLD-like in the context of complex model-
ased fMRI experiments ( Kundu et al., 2012 ), or whether these signals
ight be erroneously discarded, or, worse, propagated across the brain

ecause of biased retention of only task-like signal components, poten-
ially leading to false-positive activation. 
2 
Here, we addressed this knowledge gap by quantifying how ME-
CA affects model-based fMRI analyzes by comparing ME-ICA to both
 minimally pre-processed single echo pipeline and optimally combined
ulti-echo fMRI without ICA denoising. We were specifically inter-

sted in comparing ME-ICA versus single echo and optimal combina-
ion with respect to i) data quality, ii) model fitting performance, and
ii) reliability of model parameter estimates. To this end, we leveraged
he well-studied population receptive field (pRF) mapping paradigm
 Amano et al., 2009 ; Dumoulin and Wandell, 2008 ; Groen et al.,
022 ; Harvey and Dumoulin, 2011 ; Larsson and Heeger, 2006 ; Lerma-
sabiaga et al., 2020 ; Silson et al., 2016 , 2015 ; Takemura et al., 2012 ;
andell et al., 2007 ; Wandell and Winawer, 2015 ; Winawer et al.,

010 ). In brief, pRF mapping involves systematic spatiotopic stimula-
ion of the visual field to find the optimal visual receptive field for
ach voxel in the brain ( Fig. 1 ) ( Dumoulin and Wandell, 2008 ). The
RF paradigm is ideal for evaluating the impact of ME-ICA for several
easons ( Lerma-Usabiaga et al., 2020 ). First, the spatial distribution of
etinotopic coding in the brain is well-described, so this prior knowl-
dge can serve as a basis for evaluating the impact of ME-ICA. Second,
ecause pRF mapping relies on model fitting, the impact of denoising
an be evaluated by comparing variance explained (R 

2 ) across acquisi-
ion and preprocessing protocols. Third, because three pRF parameters
position (X, Y) and size (sigma)) are estimated from the data, the im-
act of acquistion and preprocessing protocols on parameter reliability
an be quantified by comparing the parameter estimates from distinct
uns of data. To preview our results, we found that ME-ICA significantly
mproved data quality, model fit performance, and parameter estimate
eliability compared to both single echo data and optimal combination
lone. 

. Methods 

.1. Participants 

We recruited 13 participants (10 females, mean age = 23.23 ± 3.5
td) for this study. Participants had normal or corrected-to-normal vi-
ion, were not colorblind, and were free from neurological or psychiatric
onditions. Written consent was obtained from all participants in accor-
ance with the Declaration of Helsinki with a protocol approved by the
artmouth College Institutional Review Board and Committee for Pro-

ection of Human Subjects (CPHS). 

.2. Retinotopy 

To map population receptive fields (pRFs), we used a paradigm
dapted from Silson et al. (2015) (scene pRF mapping). In brief, we
resented portions of scene images through a bar aperture that moved
n a stepwise fashion through a circular field (diameter = 11.4° visual an-
le). During each 36 s sweep, the bar aperture took 18 evenly spaced
teps every 2 s (1 TR). The bar made eight passes in each run (four ori-
ntations, two directions: L-R, BR-TL, T-B, BL-TR, R-L, TL-BR, B-T, and
R-BL; L: left, R: right, B: Bottom, T: top). During each bar step (1 TR),
e rapidly presented five scene fragments (400 ms per image). All 90
ossible scene images were displayed once per sweep, reducing the like-
ihood that participants could mentally “fill in ” the underlying image.
o ensure fixation, participants performed a color-detection task at fix-
tion, indicating when the fixation dot changed from white to red via
utton press (semi-random, approximately 2 color changes per sweep).
ix runs of pRF data were collected from each participant. 

.3. FMRI 

.3.1. MRI acquisition 

All data were collected at Dartmouth College on a Siemens Prisma
T scanner (Siemens, Erlangen, Germany) equipped with a 32-Channel
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Fig. 1. Population receptive field modeling paradigm. A. Task schematic for pRF mapping: Scene images were flashed through a bar aperture that traversed the visual 
field. A single sweep across the visual field took 36 s and consisted of 18 equal time (2 s) and width instances of the aperture. In each run, the aperture completed 
eight sweeps (2 orientations, 4 directions). Participants were required to maintain fixation and indicate the detection of a color change at fixation via button press. 
Over an entire sweep, 90 scene images (5 × 18 aperture positions) were presented at random without replacement, guaranteeing that no scene was presented twice 
within a sweep. This results in a measured timeseries at each fMRI voxel (B). C. To determine the population receptive field for each voxel, a synthetic timeseries is 
generated for 400 locations in the visual field (200 x and y positions), and 100 sizes (sigma). This results in 4 million possible timeseries that are fit to each voxel’s 
activity (D). This fitting procedure is done separately for ME-ICA, optimally combined, and single echo data. a.u.: Arbitrary units. 
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ead coil. Images were converted from dicom to nifti format using
cm2niix (v1.0.20190902) ( Li et al., 2016 ). 

.3.2. T1 image 

For registration purposes, a high-resolution T1-weighted
agnetization-prepared rapid acquisition gradient echo (MPRAGE)

maging sequence was acquired (TR = 2300 ms, TE = 2.32 ms, inversion
ime = 933 ms, Flip angle = 8°, FOV = 256 × 256 mm, slices = 255, voxel
ize = 1 × 1 × 1 mm). T1 images segmented and surfaces were generated
sing Freesurfer ( Dale et al., 1999 ; Fischl, 2012 ; Fischl et al., 2002 ) (ver-
3 
ion 6.0) and SUMA ( Saad and Reynolds, 2012 ). Anatomical data were
ligned to the fMRI data using AFNI’s ( Cox, 1996 ) align_ epi _anat.py and
SUMA_AlignToExperiment ( Saad and Reynolds, 2012 ). 

.3.3. Functional MRI acquisition 

FMRI data were acquired using a multi-echo T2 ∗ -weighted se-
uence. The sequence parameters were: TR = 2000 ms, TEs = [14.6, 32.84,
1.08], GRAPPA factor = 2, Flip angle = 70°, FOV = 240 ×192 mm, Ma-
rix size = 90 ×72, slices = 52, Multi-band factor = 2, voxel size = 2.7 mm
sotropic. The initial two frames of data acquisition were discarded by
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Table 1 

Number of components accepted and rejected during ICA-component selection for all participants’ data. Accepted components include all components included in 
the final ME-ICA denoised timeseries. 

run 1 run 2 run 3 run 4 run 5 run 6 Mean 

accepted rejected accepted rejected accepted rejected accepted rejected accepted rejected accepted rejected accepted rejected 

subj1 31 29 33 32 39 32 39 30 39 27 46 33 32.43 30.50 
subj2 29 19 31 22 35 19 36 19 40 23 33 23 29.14 20.83 
subj3 26 18 30 15 28 17 29 20 33 19 32 18 25.43 17.83 
subj4 37 36 38 42 37 39 44 35 37 28 37 30 32.86 35.00 
subj5 38 46 42 40 43 34 36 45 37 44 44 36 34.29 40.83 
subj6 34 24 50 19 52 26 46 32 51 25 45 34 39.71 26.67 
subj7 30 24 34 19 31 14 25 29 35 25 36 20 27.29 21.83 
subj8 33 23 32 32 31 34 34 33 34 28 30 24 27.71 29.00 
subj9 29 34 35 24 35 23 36 30 39 27 37 25 30.14 27.17 
subj10 33 33 40 36 41 37 42 36 35 43 37 37 32.57 37.00 
subj11 35 25 35 34 34 43 34 35 35 27 35 29 29.71 32.17 
subj12 29 19 28 21 29 23 30 23 31 23 30 18 25.29 21.17 
subj13 57 18 50 28 49 32 50 30 51 26 52 26 44.14 26.67 
Mean 33.92 26.77 36.77 28.00 37.23 28.69 37.00 30.54 38.23 28.08 38.00 27.15 31.59 28.21 
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he scanner to allow the signal to reach steady state. The full task com-
rised 144 timepoints. 

.3.4. Preprocessing 

Multi-echo data processing was implemented based on the multi-
cho preprocessing pipeline from afni_proc.py in AFNI (version 21.3.10
rajan) ( Cox, 1996 ). Signal outliers in the data were attenuated (3dDe-
pike) ( Jo et al., 2013 ). Motion correction was calculated based on the
econd echo, and these alignment parameters were applied to all runs.
or the single echo procedure, we considered only the middle echo.
or optimally combined and ME-ICA denoised procedures, the optimal
ombination of the three echoes was calculated, and the echoes were
ombined to form a single, optimally weighted timeseries (T2smap.py,
istributed with tedana.py ( DuPre et al., 2021 )). ME-ICA was then per-
ormed for the ME-ICA denoised data (see below). 

Following denoising, all images (single echo, optimally combined,
nd ME-ICA denoised) were blurred with a 5 mm gaussian kernel in the
olume (3dBlurInMask), and signals were normalized to percent signal
hange. No censoring based on motion was applied. 

ulti-echo ICA. The ME-ICA data were denoised using TE-dependent
ulti-echo ICA denoising (tedana.py, version 0.0.1 ( DuPre et al., 2021 ,

 Evans et al., 2015 ; Kundu et al., 2013 , 2012 )). In brief, PCA was applied
sing the PCA function from sk-learn ( Pedregosa et al., 2011 ), and ther-
al noise was removed using the Kundu-stabilize decision tree method

 Kundu et al., 2013 ). Subsequently, data was decomposed using ICA,
nd the resulting components were classified as signal and noise based
n the known properties of the BOLD versus noise on the T2 ∗ signal de-
ay. Components were classified as noise using tedana ’s automated clas-
ification with accuracy confirmed via visual inspection. Outputs from
edana were visually inspected to ensure no task-correlated or BOLD-like
ignals were classified as noise component selection. Components classi-
ed as noise were projected out of the data, and remaining components
onstituted the denoised timeseries. 

The number of components accepted and rejected by ME-ICA for
ach subject and run is presented in Table 1 . 

RF model. Our goal was to determine the impact of multi-echo fMRI on
ncoding model fit and parameter reliability. To this end, we performed
everal analyzes that differed in the number of runs averaged together
n time to constitute the timeseries fit by the pRF model. Averaging runs
n the time domain is typical in pRF mapping studies to increase signal-
o-noise of data prior to model fitting ( Silson et al., 2016 , 2015 ). The
RF model implementation used for all analyzes is described below. Un-
ess otherwise specified, data presented considered all six runs averaged
ogether in time. 
4 
Data were analyzed using the pRF implementation in AFNI. We de-
cribe the pRF modeling procedure briefly here. For a full description
f the pRF model theory and implementation, see ( Dumoulin and Wan-
ell, 2008 ; Silson et al., 2015 ). The model estimates pRFs using three
arameters: center position (X and Y) and a size (sigma). Center posi-
ions X and Y are sampled on a cartesian grid with 200 samples across
he width and height of the screen, and 100 evenly spaced FWHM vary-
ng from 0 to half of the screen width constitute possible pRF sizes
sigma). These result in 4 million possible pRFs for which the time-
eries (i.e., bar positions over time) are estimated and convolved with
he hemodynamic response function. We then find the best fit time-
eries for each voxel by minimizing the least-squares error of the pre-
icted versus actual timeseries (using both Simplex and Powell opti-
ization algorithms). The resulting output contains the best X, Y, and

igma (pRF size) values for each voxel, as well as the explained variance
R 

2 ). PRF model fitting was conducted in each subject’s original volume
pace. 

Outputs from the pRF model fitting were subsequently mapped to
he surface after pRF model fitting using AFNI’s 3dVol2Surf. 

.4. ROI definitions 

We considered three ROIs known to have retinotopic response prop-
rties ( Dumoulin and Wandell, 2008 ; Silson et al., 2015 ) to assess model
erformance in low and high-level visual areas. 

For low level areas we considered early visual cortex, which we
efined anatomically using Glasser parcellation ( Glasser et al., 2016 )
visual areas 1–3) defined on the SUMA standard mesh (std.141.)
 Argall et al., 2006 ; Saad and Reynolds, 2012 ). 

To evaluate model fits in high-level visual areas, in each subject we
ndependently defined the scene selective areas on the brain’s lateral
occipital place area; OPA ( Dilks et al., 2013 )) and ventral (parahip-
ocampal place area; PPA ( Epstein and Kanwisher, 1998 )) surface.
hese regions were established using the same criterion we used in our
rior work ( Steel et al., 2021 ). Participants passively viewed blocks of
cene, face, and object images presented in rapid succession (500 ms
timulus, 500 ms ISI). Blocks were 24 s long, and each run comprised
2 blocks (4 blocks/condition). There was no interval between blocks.
articipants performed two runs of the scene perception localizer. Scene
nd face areas were drawn based on a general linear test comparing the
oefficients of the GLM during scene versus face blocks. These contrast
aps were then transferred to the SUMA standard mesh (std.141) using
SUMA_Make_Spec_FS and @Suma_AlignToExperiment ( Argall et al.,

006 ; Saad and Reynolds, 2012 ). A vertex-wise significance of p < 0.001
long with expected anatomical locations was used to define the regions
f interest ( Julian et al., 2012 ; Steel et al., 2021 ; Weiner et al., 2018 ). 
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.5. Data analysis and statistics 

For ROI-based analyzes, we excluded surface vertices if they failed
o meet the following criterion in all preprocessing procedures: 

• R 

2 value greater than 0.1, which is within the typical range for pRF
mapping studies ( Gomez et al., 2019a , 2019b ; Silson et al., 2016 ,
2015 ). We adopted this less strict criteria for our ROI-based ana-
lyzes because of the known retintopic properties of these areas and
to ensure that we had sufficient vertices surviving the threshold in
the single echo and optimally combined processed data. 

• Center position (X and Y value) between -0.95 and 0.95 relative to
minimum and maximum of the cartesian grid 

• Sigma less than 0.95 of the maximum modeled width 

Because of the non-normal distribution of R 

2 and parameter esti-
ates, for vertex-based analyzes we employed non-parametric statistical

ests (Kruskal-Wallis and Wilcoxon rank-sum tests). For across partici-
ant analyzes, we used standard parametric tests (ANOVAs). 
ig. 2. Multi-echo fMRI improves temporal signal-to-noise (tSNR) compared to sing
ignal divided by standard deviation of the residuals after pRF model fitting. The ME-I
ombination alone. Upper panel shows whole brain tSNR values. Lower panel shows
ptimal combination + ME-ICA denoising. 

5 
. Results 

.1. Multi-echo ICA denoising improves temporal signal-to-noise across the 

rain 

We first sought to determine the impact of ME-ICA on data qual-
ty during task fMRI. To this end, we quantified the temporal signal-
o-noise (tSNR) of the preprocessed timeseries. We divided the signal
verage (here, timeseries means) by the standard deviation of the noise
here, the residual series after PRF estimation). ME-ICA clearly improved
SNR compared to standard preprocessed optimal combined or single
cho data ( Fig. 2 ). The average tSNR for ME-ICA processed data approx-
mately was 1.6x and 1.3x greater than the single echo and optimally
ombined data, respectively (mean ± std tSNR: single echo = 167.7 ± 44.8,
ptimally combined = 198 ± 42.7, ME-ICA = 266.5 ± 55). This improve-
ent was due exclusively to a decrease in the standard deviation (de-
ominator). The optimally combined signal offered a modest improve-
ent compared to single echo. Consistent with the increased signal from
le echo with minimal preprocessing. We calculated tSNR by taking the mean 
CA procedure significantly improved tSNR compared to single echo and optimal 
 difference relatively to single echo for (left) optimal combination and (right) 
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Fig. 3. ME-ICA procedure results in significant improvement in pRF model fits across visual cortex. ME-ICA improved R 2 by as much as 21%, with the largest 
improvements occuring in ventral temporal cortex. The colorbar is scaled equivalently for R 2 maps across all preprocessing procedures. 
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(  
he short TE, the improvement from optimal combination was concen-
rated in the ventral medial prefrontal cortex and lateral temporal lobes.

.2. Multi-echo ICA denoising improves variance explained by the 

etinotopic encoding model 

The previous result confirmed that ME-ICA denoising and optimal
ombination with single echo processing improves tSNR compared to
ingle echo during task fMRI. But does the improved tSNR translate to
etter model fitting? We addressed this question by comparing the R 

2 

alues between the three processing strategies. 
We found a significant improvement in model fitting after ME-ICA

ompared to single echo and optimally combined data ( Fig. 3 ). Interest-
ngly, although optimal combination without ME-ICA denoising yielded
mproved tSNR, optimal combination alone offered little improvement
ompared to single echo acquisition. 

Across the majority of retinotopic cortex, R 

2 was greater for ME-ICA
ompared to single echo and optimal combination alone, with differ-
nces as large as 21%. The most pronounced improvement occurred in
entral occipitotemporal cortex, which we attribute to the tSNR increase
fforded by optimal combination and ME-ICA. Importantly, model fits at
ur conservative whole-brain R 

2 threshold (R 

2 = 0.2) do not extend out-
ide of established retinotopic cortex, suggesting that the model fitting
oes not arise from an artificial propagation of the task-related signal to
on-retinotopic cortex. 

This whole-brain analysis offered a coarse, high-level overview of
he improvement afforded by ME-ICA denoising. To quantify the im-
rovement more directly, we examined model fits in three visual ar-
as with known retinotopic properties: early visual cortex (V1-V3 de-
ned anatomically based on the Glasser parcellation ( Glasser et al.,
016 )), as well as two high level visual areas defined functionally in
ach individual: parahippocampal place area (PPA; ( Epstein and Kan-
isher, 1998 )) on the ventral surface with a upper-field bias, and occip-

tal place area (OPA; ( Dilks et al., 2013 ; Hasson et al., 2003 , 2002 ))
n the lateral surface with a lower-visual field bias ( Silson et al.,
015 ). Example voxel timeseries in these regions from individual par-
6 
icipants are shown in Fig. 4 , and the distribution of R 

2 values in
hese areas from all vertices in all individuals is shown in Fig. 5 . The
mprovement in R 

2 from ME-ICA is readily apparent in all regions,
nd the distributions are significantly different (Early visual cortex
left hemisphere: X 

2 (2,214,607) = 5752.29, p < 0.0001; right hemi-
phere: X 

2 (2,215,610) = 5821.19, p < 0.0001; OPA – left hemisphere:
 

2 (2,8253) = 525.62, p < 0.0001, right hemisphere: X 

2 (2,9422) = 527.85,
 < 0.0001; PPA – left hemisphere: X 

2 (2,8070) = 737.39, p < 0.0001, right
emisphere: X 

2 (2,8792) = 953.55, p < 0.0001). These results demon-
trate that ME-ICA denoising improved model fitting success compared
o both single echo acquisition and optimal combination without ICA-
enoising. 

.3. ME-ICA increases reliability of parameter estimates with limited data 

Our analysis of model fitting suggests that ME-ICA denoising offers
ubstantial improvement in model fitting. However, it is possible that
arameter estimates from ME-ICA are not robust if the components do
ot adequately describe the original signal. We investigated the robust-
ess and reliability in two ways. First, to determine whether ME-ICA
enoising preserved the underlying signal, we compared the parameters
stimated from ME-ICA denoised data with parameters estimated from
he optimally combined and single echo data at every supra-threshold
ertex for all subjects. For this analysis, we considered the average of all
ix data runs. For simplicity, we considered both hemispheres together.
he statistical results for these correlations are reported in Table 2 . 

Consistent with ME-ICA preserving the underlying data signal, we
ound that pRF parameter estimates were highly correlated in all re-
ions of interest across the preprocessing regimes. In all regions, pRF
enter location estimates were correlated across all preprocessing pro-
edure Figure 6, 7 and 8 . Sigma estimates were well-correlated between
E-ICA compared with optimally combined and single echo data for

arly visual cortex and OPA. PPA showed lower correlation between
igma estimates from ME-ICA with the other procedures This decreased
orrelation in PPA was due to a shift towards narrower pRF estimates
smaller FWHM) after ME-ICA denoising compared with optimally com-
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Fig. 4. Example voxels timeseries from individual participants. The improvement from ME-ICA appears to result from removed high-frequency noise, which is 
particularly evident in subject 3 (bottom). gray line depicts the model fit from the denoised timeseries for reference. 
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ined and single echo data, which could suggest greater precision in pRF
arameter estimates after ME-ICA denoising ( van Dijk et al., 2016 ). 

As a second approach to test parameter estimate reliability, we com-
ared the parameter estimates from each single run of data within a
iven subject. For each subject, we correlated the run x run parameter
stimates for X, Y, and sigma across all vertices in early visual cortex,
nd compared correlation values across the preprocessing techniques.
7 
igher correlation values indicate greater reliability of parameter es-
imates. We focused on early visual cortex because each run was es-
imated independently, so we were unable to meet our R 

2 threshold
0.10) for vertices in PPA and OPA after single echo processing in all
ubjects. For all three parameters (X, Y, and Sigma) ME-ICA denoising
esulted in improved reliability (See Table 3 for statistical analysis;
igure 9 ). 
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Fig. 5. Distribution of R 2 values from early visual cortex (top), occipital place area (middle), and parahippocampaal place area (bottom) across the data processing 
procedures. ME-ICA resulted in significantly greater variance explained in all regions. 

8 
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Fig. 6. Population receptive field model parameter estimates are highly reliable for early visual cortex. Each plot depicts the vertex-wise correlation between two 
processing procedures. Data points represent parameter estimates from a single vertex from a single participant. Top row: X parameter, Middle row: Y parameter, 
Bottom row: Sigma parameter. Black line indicates the unity line. 
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The above analysis suggested that ME-ICA results in significantly
reater reliability with limited data. For our final analysis, we inves-
igated how much R 

2 increased as more data is added. For this analysis,
n each subject we averaged together increasing numbers of pRF data
uns before pRF model fitting (average 1 = run 1, average 2 = runs 1–2,
verage 3 = runs 1–3, etc.). We then calculated the average R 

2 by the
RF model in early visual cortex at each number of averages. We com-
ared these R 

2 values using a repeated measures ANOVA with number
f averages (1–6) and preprocessing procedure (single echo, optimally
ombined, ME-ICA) as factors. Regardless of preprocessing, R 

2 improved
ith increasing numbers of runs (Main effect of averages: F(5334) = 89,
 < 0.0001; Figure 10 ). However, the pRF model explained significantly
ore variance after ME-ICA compared to the other preprocessing pro-

edures regardless of number of averages (Main effect of preprocessing:
(2334) = 76.26, p < 0.0001). We found that even with just a single
un, ME-ICA resulted in R 

2 roughly equivalent to three runs of optimally
9 
ombined or single echo data, and just two runs of ME-ICA achieved the
ame performance as six runs of the other procedures. This finding is
onsistent with findings investigating precision mapping of functional
etworks using resting state fMRI ( Lynch et al., 2020 )). 

. Discussion 

Here, we investigated the impact of multi-echo acquisition and TE-
ependent ICA denoising on model-based fMRI analysis. We found that
E-ICA significantly improved tSNR compared to traditional prepro-

essing of optimally combined or single echo data resulting from a stan-
ard population receptive field (pRF) mapping paradigm (though op-
imally combining data improved tSNR compared to single echo data,
s well). Compared to single-echo or optimal combination without de-
oising, ME-ICA increased the variance explained by our pRF model
hroughout the visual system and improved detection of pRFs in diffi-
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Fig. 7. Population receptive field model parameter estimates are highly reliable for OPA. Each plot depicts the vertex-wise correlation between two processing 
procedures. Data points represent parameter estimates from a single vertex from a single participant. Left column: Single echo x Optimal combination, Middle 
column, ME-ICA x Single echo, Right column: ME-ICA x Optimal combination. Top row: X parameter, Middle row: Y parameter, Bottom row: Sigma parameter. Black 
line indicates the unity line. 
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ult to image regions like lateral ventral temporal cortex. ME-ICA also
mproved reliability of model parameter estimation. Together, these re-
ults demonstrate that ME-ICA preprocessing offers a significant benefit
or model-based fMRI analyzes. 

.1. ME-ICA improves tSNR and model fitting 

As expected, we found that multi-echo fMRI acquisition improved
SNR. Both ME-ICA denoised and optimally combined data with typi-
al preprocessing had significantly better tSNR compared to single echo
ata. The improvement was most pronounced in ventral temporal and
rbitofrontal cortex because the dropout artifact in these areas was ef-
ectively mitigated at the short TE. This finding largely agrees with pre-
ious studies that compared results using resting state and task data
10 
 Gonzalez-Castillo et al., 2016 ; Kundu et al., 2012 ; Lombardo et al.,
016 ; Lynch et al., 2020 ; Turker et al., 2021 ). 

Surprisingly, the tSNR boost did not directly translate to improved
odel fits. When we compared R 

2 by our retinotopy model across the
reprocessing procedures, we found that the pRF model explained sig-
ificantly more variance in ME-ICA denoised data compared to tradi-
ional preprocessing of optimally combined or single echo data. This
grees with a resting state investigation ( Boyacio ğlu et al., 2015 ),
herein the authors reported a failure to recover known resting state
etworks from optimally combined multi-echo data without ICA denois-
ng (in this case, FIX-ICA ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,
014 )). This finding is important, because one might opt to do multi-
cho acquisition with the goal of improving tSNR but not use ME-ICA
enoising – for example, this procedure is implemented in one widely
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Fig. 8. Population receptive field model parameter estimates are highly reliable in PPA. Each plot depicts the vertex-wise correlation between two processing proce- 
dures. Data points represent parameter estimates from a single vertex from a single participant. Note that reliability is lower for sigma between ME-ICA and optimally 
combined/single echo denoising. On average, sigma estimates are lower for ME-ICA, suggesting higher precision sigma estimates. Top row: X parameter, Middle 
row: Y parameter, Bottom row: Sigma parameter. Black line indicates the unity line. 

Fig. 9. ME-ICA improves reliability of parameter estimates. X, Y, and Sigma estimates were calculated from single runs of pRF mapping. We then correlated these 
vertex-wise parameter estimates for all vertices within early visual cortex (V1-V3) across all pairs of runs. Reliability of parameter estimates were generally very 
high. However, ME-ICA resulted in greater reliability than either single echo or optimal combination alone, particularly for sigma. 

11 
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Table 2 

Correlation between parameter estimates across preprocess- 
ing strategies. EVC: early visual cortex; OPA: occipital place 
area; PPA: parahippocampal place area; SE: Single echo; OC: 
Optimally combined; DN: ME-ICA denoised. 

Parameter Region Preprocessing DF r-value 

X 
EVC 

SExOC 143,405 0.97 
SExDN 143,405 0.93 
OCxDN 143,405 0.94 

OPA 
SExOC 5696 0.98 
SExDN 5696 0.97 
OCxDN 5696 0.97 

PPA 
SExOC 5326 0.98 
SExDN 5326 0.96 
OCxDN 5326 0.97 

Y 
EVC 

SExOC 143,405 0.95 
SExDN 143,405 0.9 
OCxDN 143,405 0.91 

OPA 
SExOC 5696 0.97 
SExDN 5696 0.96 
OCxDN 5696 0.95 

PPA 
SExOC 5326 0.94 
SExDN 5326 0.88 
OCxDN 5326 0.91 

Sigma 
EVC 

SExOC 143,405 0.92 
SExDN 143,405 0.83 
OCxDN 143,405 0.86 

OPA 
SExOC 5696 0.95 
SExDN 5696 0.83 
OCxDN 5696 0.85 

PPA 
SExOC 5326 0.82 
SExDN 5326 0.64 
OCxDN 5326 0.69 

Table 3 

Comparison between distributions in run x run correlation of parameter values 
X, Y, and sigma in early visual cortex. SE: Single echo; OC: Optimally combined; 
DN: ME-ICA denoised. 

Parameter Statistical test Statistic df p 

X 
Kruskal-Wallis X 2 

20.58 21,167 0.001 
rank sum z 

OCvSE: − 0.2 0.83 
DNvSE: 3.865 0.0001 
DNvOC: 3.985 0.0001 

Y Kruskall-Wallis X 2 

39.41 21,167 0.001 
rank sum z 

OCvSE: 0.1 0.91 
DNvSE: 5.5448 0.0001 
DNvOC: 5.3236 0.0001 

Sigma 
Kruskal-Wallis X 2 

27.79 21,167 0.001 
rank sum z 

OCvSE: 0.39 0.695 
DNvSE: 4.815 0.0001 
DNvOC: 4.2814 0.0001 

Fig. 10. ME-ICA improves model fitting with limited data. In each subject we 
averaged increasing numbers of runs and calculated the average R 2 in early 
visual cortex at each number of averages (average 1 = run 1, average 2 = runs 
1–2, average 3 = runs 1–3, etc.). ME-ICA benefitted model fitting at all levels 
of data, with just two runs of data needed to achieve the same R 2 as six single 
echo and optimally combined runs. 
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12 
sed preprocessing framework FMRIPREP ( Esteban et al., 2018 )() (N.B.,
E-dependent ICA denoising can be implemented separately on data
rocessed using the FMRIPREP pipeline ( DuPre et al., 2021 , )). How-
ver, our data suggest that model fitting greatly benefits from ME-ICA
enoising, and that optimal combination without ME-ICA may only be
dvantageous compared to single echo acquisition in limited circum-
tances. 

The reason for the dissociation between tSNR and model fitting per-
ormance after optimal combination alone is not clear. One possibility
s that global noise sources common across all echoes exist in the data,
nd so acquiring multiple echoes does not equate to the same benefit
s independent averages ( Power et al., 2017 ). Given that the average
mprovement in tSNR did not increase as much as expected (i.e., im-
rovement was less than the square root of number of averages), this
eems likely. Additionally, contrast-to-noise ratio is lower in the short
cho times. So, despite improved tSNR in areas with shorter optimal
Es, these regions may still have suboptimal contrast-to-noise required
or model fitting. Future work should continue examining the relation-
hip between model fitting performance and tSNR. 

.2. ME-ICA improves reliability of model parameter estimation 

Beyond R 

2 , it is important that preprocessing and analysis
hoices lead to reproducible outcomes ( Botvinik-Nezer et al., 2020 ;
owring et al., 2019 ; Lerma-Usabiaga et al., 2020 ; Soltysik, 2020 ). In
ur study, we leveraged the relative stability of voxel-wise retinotopic
uning to test whether ME-ICA led to similar parameter estimates from
ndependent runs of data ( van Dijk et al., 2016 ). We found that ME-
CA gave highly robust parameter estimates. First, parameters estimated
rom ME-ICA data were highly correlated to parameters estimated from
ingle-echo data. This result suggests that the ICA procedure does not
ntroduce bias or distort the timeseries signal. 

Second, ME-ICA improved the reliability of retinotopy parameter es-
imation from single runs of fMRI data compared to single echo or opti-
al combination alone. In addition, we found that ME-ICA preprocessed
ata led to significantly lower estimates of pRF size compared to tradi-
ional preprocessing, suggesting that ME-ICA may increase the precision
f pRF estimation ( van Dijk et al., 2016 ). 
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.3. Alternative preprocessing strategies 

In the present study, we investigated the impact of ME-ICA denois-
ng compared to a traditional, minimal preprocessing pipeline. Specifi-
ally, we sought to quantify the effect of ME-ICA on tSNR, model fitting,
nd parameter estimation. Other data-driven denoising techniques us-
ng ICA (e.g., hand classification ( Griffanti et al., 2017 ) or automated
ipelines such as AROMA-ICA ( Pruim et al., 2015 ) or ICA-FIX ( Salimi-
horshidi et al., 2014 )) are highly effective at denoising single echo

MRI data. Some data suggests that any ICA-denoising strategy is gen-
rally superior to traditional preprocessing. For example, Boyacio ğlu
nd colleagues found that multi-echo acquisition combined with non-
E dependent ICA significantly benefitted resting state data analysis,
hich raises the possibility that ICA denoising may be broadly bene-
cial ( Boyacio ğlu et al., 2015 ). Non-TE dependent ICA techniques can
e run on single echo or optimally combined data and thus may be vi-
ble preprocessing options if multi-echo acquisition is not possible. In
rinciple, because TE-dependent ICA incorporates information regard-
ng T2 ∗ -signal decay, this strategy should be more effective at isolating
ignal and noise components, but such a comparison is outside the scope
f the current work. Future work should consider whether TE-dependent
CA offers a significant benefit compared to non-TE dependent ICA pre-
rocessing techniques. 

Despite its promise, it is important to note that ICA-based denoising
s not a panacea, and some noise sources remain (and can be worsened)
fter ICA-based denoising strategies, including ME-ICA ( Power et al.,
018 ). Additionally, because ICA is non-deterministic, it can fail to con-
erge or fail to produce high-quality components, so it is important to
heck the output from this technique thoroughly. Visual inspection of
omponents is critically important to ensure that ICA-decomposition
onverged, that components were classified as signal or noise appro-
riately, and that task-correlated regressors were not excluded from the
nal ME-ICA denoised timeseries. 

Our minimal preprocessing included only despiking, motion cor-
ection, smoothing, and scaling, which is similar the pipeline used in
ur other retinotopy studies ( Silson et al., 2016 , 2015 ). This never-
heless represents just one possible choice among many ( Caballero-
audes and Reynolds, 2017 ; Moia et al., 2021 ; Power et al., 2017 ).

t is common in resting state fMRI to remove high-motion time points
rom data and to project ‘nuisance regressors’ out of the data prior to
nalysis ( Ciric et al., 2017 ; Power et al., 2017 ; Satterthwaite et al.,
013 ), and these approaches are sometimes used to preprocess task-
MRI data ( Caballero-Gaudes and Reynolds, 2017 ). These techniques,
ncluding CompCor ( Behzadi et al., 2007 ), ANATICOR ( Jo et al., 2010 ),
otSim ( Patriat et al., 2017 ), and multiple derivatives of motion

 Satterthwaite et al., 2013 ), can be applied to the single-echo times se-
ies or to the optimally-combined multi-echo acquisition as an alterna-
ive to ICA-based denoising. These correction methods can be highly ef-
ective. For example, one study found that, when imaging at ultra-high
elds, appropriate correction for physiological noise offered approxi-
ately 25% improvement in SNR in visual cortex, which increases to
8% improvement when accounting for motion ( Hutton et al., 2011 ).
hese preprocessing strategies have been compared in detail elsewhere
 Ciric et al., 2017 ; Moia et al., 2021 ; Power et al., 2017 ), and an ex-
austive comparison of preprocessing choices is out of the scope of the
resent work (for a comprehensive review see, ( Caballero-Gaudes and
eynolds, 2017 )). 

Finally, what factors should be considered when choosing multi-echo
ersus single echo acquisitions? Our results suggest that multi-echo fMRI
ith ICA denoising can yield significant improvements compared to sin-
le echo acquisition. However, because multi-echo acquisition requires
aking multiple EPI volumes in a single TR, multi-echo generally re-
uires a longer TR than optimized single echo acquisition regimes. Re-
atedly, the sampling duration necessary for super high resolution fMRI
maging can preclude the use of multi-echo fMRI. While these limita-
ions can be overcome using multi-slice acquisition, in-plane accelera-
13 
ion, or partial Fourier acquisition, these techniques can result in de-
reased signal-to-noise of the resulting data ( Boyacio ğlu et al., 2015 ;
ohen et al., 2021 ; Tsao and Kozerke, 2012 ). Indeed, the data we used

or single echo comparison was collected during the multi-echo acquisi-
ion and used both in-plane and multi-slice acceleration to achieve our
esired spatial and temporal resolution. So, it is possible that an op-
imized single-echo fMRI acquisition and effective preprocessing could
chieve similar results to multi-echo. However, because single-echo ac-
uisition requires choosing a specific TE, optimizing for specific brain
reas inherently sacrifices SNR and/or contrast-to-noise in areas with
horter (or longer) optimal TEs ( Kundu et al., 2017; Poser et al., 2006;
osse, 2012 ). Therefore, data acquired using a single echo acquisition
ay be suboptimal with respect to the homogeneity of SNR across the

rain compared to multi-echo acquisition. In the end, the optimal acqui-
ition and preprocessing procedure for any given study depends on the
esearch question, as well as the technical, computational, and hardware
esources available. 

. Conclusion 

To summarize, we found that ME-ICA improves tSNR and model fit-
ing in task-based fMRI data (pRF mapping) both in terms of variance ex-
lained and regions implicated. Additionally, our findings suggest that
odel parameters can be estimated reliably from just a single run of
ata after ME-ICA processing. Therefore, ME-ICA may be an attractive
ption for naturalistic fMRI experiments where collecting single runs of
MRI data is common. 
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