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SUMMARY
Each view of our environment captures only a subset of our immersive surroundings. Yet, our visual experi-
ence feels seamless. A puzzle for human neuroscience is to determine what cognitive mechanisms enable us
to overcome our limited field of view and efficiently anticipate new views as we sample our visual surround-
ings. Here, we tested whether memory-based predictions of upcoming scene views facilitate efficient
perceptual judgments across head turns. We tested this hypothesis using immersive, head-mounted virtual
reality (VR). After learning a set of immersive real-world environments, participants (n = 101 across 4 exper-
iments) were briefly primedwith a single view from a studied environment and then turned left or right tomake
a perceptual judgment about an adjacent scene view.We found that participants’ perceptual judgmentswere
faster when they were primed with images from the same (vs. neutral or different) environments. Importantly,
priming required memory: it only occurred in learned (vs. novel) environments, where the link between adja-
cent scene views was known. Further, consistent with a role in supporting active vision, priming only
occurred in the direction of planned head turns and only benefited judgments for scene views presented
in their learned spatiotopic positions. Taken together, we propose that memory-based predictions facilitate
rapid perception across large-scale visual actions, such as head and body movements, and may be critical
for efficient behavior in complex immersive environments.
INTRODUCTION

Humans constantly make predictions to support ongoing

behavior: we predict what will be inside our mailbox, which peo-

ple will be in the room we are entering, and whether there is time

to get through a yellow light. These predictions are often shaped

by our memories of past experiences.1 In traditional studies of

memory-based predictions, participants learn associations be-

tween stimuli presented sequentially on a screen and are trained

to predict upcoming target images (e.g., expect C, given A

and B).2–7 Once learned, these associations facilitate sensory

processing of upcoming stimuli, speeding detection8,9 and

improving recognition of anticipated percepts.10,11 However,

despite their presumed importance in everyday cognition, the

content and form of memory-based predictions during natural-

istic, active vision are unclear. As we look around the world,

exchanging visual content in the current view for content in the

next, what information is predicted across head turns?

Several lines of evidence suggest that the visual system pre-

dicts the perceptual consequences of small-scale visual actions

(i.e., saccades). During saccades, associations between foveal

and peripheral percepts support perceptual continuity. For

instance, before a saccade to a target stimulus, the pre-saccadic

center of gaze already shows enhanced sensitivity to the post-

saccadic target’s stimulus features, linking processing of the
Curre
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current view to the upcoming one.12 Memory for a previously

foveal percept also influences peripheral vision. For example,

past work has shown that the percept of a stimulus in the periph-

ery can become biased to resemble the same stimulus’ foveal

percept.13,14 These behavioral findings align closely with neural

recordings. For example, cells in monkey retinotopic cortex

anticipate the visual consequences of saccades by preemptively

responding to objects that will fall into their receptive fields

following a saccade.15–18 Compatible evidence for this phenom-

enon—termed ‘‘predictive remapping’’15—has also been identi-

fied in human neuroimaging19–21 and behavior.22–25 So, the vi-

sual system clearly predicts the consequences of small-scale

visual actions—i.e., saccades—but what about larger-scale be-

haviors? Prediction during saccades is relatively straightforward

because the visual information being predicted is, of course,

already available to draw from in the visual periphery. In contrast,

an open question is how predictive vision generalizes to large-

scale visual actions like head and body movements, where up-

coming visual information is fully out of view.

Two solutions could plausibly address how the brain gener-

ates predictions across head turns in immersive, real-world con-

texts. First, schema-level knowledge about the type of environ-

ment could be used to extrapolate visual content beyond the

current field of view. Scene extrapolation has been proposed

as a mechanism supporting the phenomenon of boundary
nt Biology 35, 121–130, January 6, 2025 ª 2024 Elsevier Inc. 121
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Figure 1. Experimental paradigm

(A) Participants were fitted with virtual reality (VR) headsets, which were used throughout the study.

(B) On both days of the training phase, participants studied each real-world scene in immersive VR for 20 s, instructed to simply ‘‘look around like you normally

would.’’

(C) Each scene had one open and one closed view on opposing sides of the initial facing-direction in the scene, spaced 180� apart on the horizontal axis.

(D) On day 2, participants performed a priming test in which they viewed a 300 ms prime image before turning left or right toward a target image (open or closed

view) to make a speeded perceptual (open/closed) judgment. Targets were presented until a response was made.

(E) Prime images in experiments 1 and 2 either depicted a continuous view adjacent to the target from the initial direction (same-scene), a blank gray rectangle

(neutral), or an image taken from the initial direction of a different scene (different-scene).

See also Figure S1 for full set of scene stimuli, Figure S2 for familiarity responses, Figure S3 for perceptual judgment accuracy, and Videos S1, S2, and S3 for

screen videos of training phase and priming test.
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extension, whereby participants falsely report having seen a

zoomed-out version of a previously viewed scene image26–29

(but see Bainbridge and Baker,30 Gandolfo et al.,31 and Hafri

et al.32). Second, memory of the broader visuospatial environ-

ment could supply specific predictions about the content and

layout of upcoming views that will result from visual actions.

Indeed, recent work has shown that views from the same envi-

ronment become associated in the brain, which could support

this type of behavioral prediction.33,34

Here, we sought to understand how memory supports natural-

istic scene perception across large-scale visual actions in immer-

sive environments. To do this, we developed an experimental

paradigm that used head-mounted virtual reality (VR) to examine

memory-based predictions in immersive, real-world scenes. After

learning a set of immersive real-world scenes, participants were

primed with a single scene view before head-turning to see

another view from the studied scenes and making an ecologically

relevant perceptual judgment (‘‘could I walk into this space?’’).

To preview our results, we found that memory-based predic-

tions are generated for upcoming scene views across head turns
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(experiment 1) and that these predictions depend on memory for

out-of-sight views of the current scene (experiment 2). Crucially,

these predictions appear to occur in service of action plans (ex-

periments 3 and 4), priming responses to content that is

congruent with the visual outcome of an intended head turn.

Together, our results suggest a role for memory-based predic-

tions in facilitating rapid perception as we sample the visual

world around us.

RESULTS

Upcoming scene views are primed across head turns
We first asked whether memory-based predictions are generated

for upcomingsceneviewsacrosshead turns in immersive environ-

ments (experiment 1). In the training phase, participants (n = 18)

learned a set of immersive real-world scenes in VR (Figure 1A).

To facilitate faster learning, scenes depicted familiar locations

around the local university (experiment 1 familiarity per participant,

quantified by percent ‘‘yes’’ responses to the prompt ‘‘are you

familiar with this place in real life? [yes/no/unsure]’’: M = 85.6%,
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SD=11.63%) (FiguresS1andS2). Scenes fully surroundedpartic-

ipants, so that they needed to use head turns to see a scene

completely (Figure1B). On each trial (20 s), participants were sim-

ply told to naturally explore each scene (i.e., ‘‘look around like you

normally would’’). Each scene featured an open view (e.g., a view

ofanopenparking lot) andaclosedview (e.g., a viewofabuilding’s

façade) on either side of an initial facing direction (Figure 1C).

Importantly, participants could accurately recall the relative spatial

position of each scene view, quantified by recall accuracy for

whether a viewhad appeared on the left, right, or center of a scene

during the training phase (explicit memory test, M = 93.70 ± 5.80

SD; t(17) = 44.17, p < 0.001, 95% confidence interval [CI] [90.81,

96.58]) (Figure S3).

After the training phase, we assessed participants’ mem-

ory-based predictions in the priming test. On each trial, partic-

ipants saw a full-field scene image (‘‘prime’’) from a studied

scene. Following the prime image, participants turned approx-

imately 90� left or right to make a perceptual judgment (open

or closed) on a second scene view (‘‘target’’) that appeared in

their periphery (Figure 1D). Participants were accurate at mak-

ing this judgment (Figure S3C; Table 2). Primes either de-

picted: (1) a view from the same scene (same-scene prime),

(2) a blank gray rectangle (neutral prime), or (3) a view from

a different scene (different-scene prime) (Figure 1E). We

considered memory retrieved in response to the prime image

the ‘‘predicted content,’’ and we assessed the behavioral

impact of this prediction by comparing median response

time (Figure 2A) across the priming conditions. We hypothe-

sized that if participants generate memory-based predictions

for upcoming scene views, response times would be faster af-

ter same-scene primes compared with neutral or different-

scene primes. We compared the differences across condi-

tions using linear mixed effects (LME) models with priming

condition (same-scene/neutral/different-scene) as a fixed

effect.

Our results reveal evidence for memory-based predictions

across head turns. A LMEmodel (fixed effect: priming condition;

random effects: participant and scene) showed a significant ef-

fect of priming condition on response time (F(2, 1,908.7) =

33.78, p < 0.001, hp
2 = 0.03) (Figure 2B; Table S1). Critically,

perceptual judgments were faster after same-scene primes

compared with neutral primes (t(17) =�2.77, p = 0.013 3 tests =

pcorr = 0.04, d = �0.43, 95% CI [�0.07, �0.01]) and were slower

after different-scene primes compared with neutral primes

(t(17) = �3.37, pcorr = 0.01, d = 0.57, 95% CI [�0.08, �0.02]).

This priming effect (same-scene < neutral) also replicated across

three pilot datasets (Figure S4). Interestingly, priming was also

observed in scenes that were reported as unfamiliar during the

day 1 training phase (t(102) = �2.79, p = 0.006, d = �0.27,

95% CI [�0.08, �0.01]) (Figure S2C), suggesting that scenes

learned in virtual environments can support memory-based pre-

diction without real-world scene experience. Taken together,

these results demonstrate that upcoming scene views are

primed across head turns in familiar environments.

Motor response preparation does not account for
priming effect
This priming effect seems to suggest that predictions are gener-

ated based on memory for the visual content of the upcoming
scene view. An alternative interpretation, however, is that partic-

ipants learned to associate each prime view with a motor

response (e.g., ‘‘if I turn left, I’ll press the ‘open’ button, if I turn

right, the I’ll press the ‘closed button’’’) without actually predict-

ing the visual content of the upcoming view. To rule out this pos-

sibility, we examined trials from the different-scene condition, in

which the prime and target scene either resulted in ‘‘motor-

matched’’ trials because they had matched layouts (e.g., were

both open on the left, closed on the right) or ‘‘motor-mis-

matched’’ trials because they had mismatched layouts (e.g.,

the prime was closed on the right, the target was open on the

right) (Figure 2C). If participants had learned to associate each

prime view with a motor response plan instead of generating a

visual prediction, motor-matched primes should evoke the cor-

rect motor plan (albeit the wrong visual prediction), resulting in

faster response times for motor-matched than motor-mis-

matched trials. Instead, a paired t test revealed no difference in

response time between motor-matched and -mismatched trials

(t(17) = 1.52, p = 0.146, 95%CI [�0.01, 0.06]) (Figure 2D). Indeed,

the data in fact trend in the opposite direction, with numerically

faster responses in motor-mismatched trials. Taken together,

this suggests that information about upcoming visual con-

tent—rather than just a motor response—was primed across

head turns.
Priming relies on memory for immersive environments
We next tested whether priming across head turns requires

memory for the specific scene or whether predictive informa-

tion arises from scene extrapolation (akin to boundary exten-

sion).27 To do this, in experiment 2, we invited a new set of par-

ticipants (n = 20) to perform the same priming test as in

experiment 1, but this time on a set of novel, unfamiliar scenes

with no training phase (Figure S5 for scene images; Table 1). We

then calculated the priming effect (same-scene vs. neutral vs.

different-scene) in experiment 2 (unfamiliar scenes) and

compared the extent of the priming effect with the effect in

experiment 1 (familiar scenes). Experiment 2 participants

were accurate at making open/closed judgments (Figure S3C;

Table 2). To measure the extent of priming, we compared

response times across the three conditions using a LMEmodel.

This analysis revealed that there was no difference in response

times across priming conditions in experiment 2 alone (LME

model: F(2, 1,889.9) = 0.70, p = 0.49, hp
2 = 0.0007) (Figure 2E;

Table S1), suggesting that no predictive information was avail-

able to speed up perceptual judgments. Next, we compared

response times for unfamiliar scenes with those for familiar

scenes (i.e., response times from experiment 1), using a LME

model with priming condition and experiment (experiment

1/experiment 2) as fixed effects (participant and scene as

random effects). Overall, response times were slower for unfa-

miliar scenes (main effect of experiment: F(1, 42.7) = 15.72,

p < 0.001, hp
2 = 0.27). Critically, there was a significant interac-

tion between experiment and priming condition (F(2, 3,861.5) =

19.012, p < 0.001, hp
2 = 0.001), indicating that familiarity with a

scene is required for priming across head turns. Together, our

results indicate that behavioral priming across head turns re-

quiresmemory-based prediction and does not arise from scene

extrapolation.
Current Biology 35, 121–130, January 6, 2025 123



Figure 2. Same-scene primes facilitate faster perceptual judgments in familiar (but not unfamiliar) scenes

(A) Example participant’s data depicting head angle on the horizontal plane across a trial. Each line depicts head angle on the horizontal plane (yaw) for one trial

from target onset. Each open circle marks the (time, head angle) of the participant at the time of the perceptual judgment.

(B) We compared median response times for perceptual judgments across priming conditions in experiment 1 (n = 18). Compared with neutral primes, same-

scene primes quickened response times and different-scene primes slowed response times. Connected points represent the same participant across

conditions.

(C) Different-scene trials (experiment 1) either contained (1) a prime and target with matching layouts (e.g., both open on the left, closed on the right), in which the

prime would evoke the correct motor plan (motor matched), or (2) mismatched layouts (e.g., prime open on the left, target open on the right) in which the prime

would evoke the wrong motor plan (motor mismatched).

(D) Response times in different-scene motor-matched trials and motor-mismatched trials do not differ. Each participant’s median response time was calculated

for motor-matched vs. motor-mismatched trials (paired t test). Connected points represent the same participant across bars.

(E) There was no difference in median response times for perceptual judgments across priming conditions in experiment 2 (n = 20), which contained unfamiliar

scenes. Connected points represent the same participant across conditions.

For all plots, * p% 0.05, ** p% 0.01, *** p% 0.001 difference betweenmedian response time for indicated priming conditions (Bonferroni-corrected paired t tests);

n.s., not significant.

See also Figure S2 for familiarity responses, Figure S3 and Table S3 for priming test accuracy, Figure S4 for replication of experiment 1 priming effect (same-

scene vs. neutral), Figure S5 for experiment 2 scene stimuli, Tables S1 and S2 for additional analysis, and Video S1 for screen videos of training phase and

priming test.
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Action plans bias direction of priming
So far, the results of experiments 1 and 2 suggest that memory-

based predictions support efficient scene perception across

head turns. In both of these experiments, an exogenous cue (a

target appearing in the periphery) alerted participants to where

they should look next. But most often in real-world contexts,

an endogenous action plan directs where we look (e.g., I head
124 Current Biology 35, 121–130, January 6, 2025
turn right to see whether I can safely change lanes in traffic).35,36

Do endogenous action plans exaggerate the extent of memory-

based predictions across head turns?

To test this, in experiment 3, we asked whether predictions are

biased in the direction of intended action plans or whether pre-

dictions are generated for all scene views surrounding the cur-

rent one, regardless of action plans. Participants (n = 26)



Table 1. Overview of experiments

– # Days Scenes

# Priming

test trials

Priming test

conditions

Condition

split (%)

# Scene view

repetitions by

condition Neutral type

Explicit

memory

test

# Participants

collected

# Participants

included

Experiment 1 2 local

university

144 same-scene 50 2 blank gray yes 26 18

neutral 25 1

different-scene 25 1

Experiment 2 1 unfamiliar

locations

144 same-scene 50 1 blank gray no 24 20

neutral 25 <1

different-scene 25 <1

Experiment 3 2 local

university

216 same-scene,

valid arrow

50 3 scrambled no 46 26

neutral, valid

arrow

16.7 1

same-scene,

invalid arrow

16.7 1

neutral, invalid

arrow

16.7 1

Experiment 4 2 local

university

144 same-scene

spatially

congruent

50 2 blank gray yes 44 37

neutral 25 1

same-scene

spatially

displaced

25 1

Pilot A 2 local

university

108 same-scene 66.6 2 blank gray yes 23 18

neutral 33.3 1

Pilot B 2 local

university

108 same-scene 66.6 2 scrambled yes 31 21

neutral 33.3 1

Pilot C 2 local

university

108 same-scene 66.6 2 scrambled yes 28 22

neutral 33.3 1
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completed a version of our priming test using the same familiar

stimulus set as in experiment 1, in which a brief left or right arrow

(300 ms) preceded the prime images (same-scene or neutral)

(Figure 3A), indicating a direction to plan a head turn in. Arrows

correctly indicated the upcoming target location (‘‘valid arrow’’)

on two-thirds of trials and were incorrect (‘‘invalid arrow’’) in

the remaining one-third of trials. If predictions serve intended ac-

tion plans, a planned head turn should strengthen the extent of

priming in the intended—but not unintended—direction.

Our results were consistent with this hypothesis. As in previ-

ous experiments, participants were accurate at making open/

closed judgments (Figure S3C; Tables 2 and S3). We observed

both a main effect of priming condition (same-scene/neutral)

(LME model: F(1, 4,405.8) = 35.16, p < 0.001, hp
2 = 0.008) and

arrow condition (valid/invalid) (F(1, 4,406.7) = 64.98, p % 0.001,

hp
2 = 0.01) on response time. Critically, the priming effect was

stronger in the direction of intended head turns, evidenced by

a significant interaction between priming condition (same-

scene/neutral) and arrow condition (valid/invalid) (F(1,

4,405.9) = 9.32, p = 0.002, hp
2 = 0.002). Post hoc tests indicated

that same-scene primes resulted in faster response times than

neutral primes in trials with valid arrows (t(25) = �4.26, pcorr =

0.002, d = �0.29, 95% CI [�0.07, �0.02]) but not invalid arrows

(t(25) = �0.65, pcorr = 1, d = 0.07, 95% CI [�0.04, 0.02])
(Figure 3B; Figure S6). This finding suggests that memory-based

predictions are coordinated with planned actions to facilitate

efficient perceptual judgments in immersive environments.

Action plans dictate primed content
Finally, we turned to the content of the memory-based predic-

tion—is the content of a memory-based prediction determined

by an agent’s planned actions (i.e., head-turn direction) within

a spatial environment? Using the priming test structure estab-

lished in experiments 1 and 2 (i.e., no arrow cue), in experiment

4 (n = 37), we introduced a new priming condition (the ‘‘same-

scene spatially displaced’’ condition) in which the prime and

target were drawn from the same scene but the target image de-

picted the view 180� opposite the expected one (e.g., the

scene’s left view, presented where the right view should appear

in space) (Figure 4A). This created a conflict between an action

(e.g., right head turn) and the predicted visual consequence of

that action (e.g., left scene view instead of right scene view). If

the content of memory-based predictions were determined by

an agent’s action in a spatial environment, then priming should

remain intact for same-scene (spatially congruent) trials but

should be disrupted for same-scene spatially displaced ones.

Consistentwithourhypothesis that anagent’s actionswithinan

immersive environment determine the content of memory-based
Current Biology 35, 121–130, January 6, 2025 125



Table 2. Overview of priming test accuracy (experiments 1–4)

–

Mean

accuracy

(SD) (%)

Repeated-

measures

ANOVA sig df F p hp
2

Post hoc

pairwise

t tests

Condition

comparison sig df t pa

Experiment 1 91.44 (4.88) – n.s. (2,34) 0.92 0.41 0.05 – – – – – –

Experiment 2 90.42 (4.34) – ** (2,38) 6.01 0.005 0.24 – same-scene vs.

neutral

n.s. 19 �0.72 1

same-scene vs.

different-scene

* 19 3.23 0.013

neutral vs.

different-scene

* 19 2.77 0.036

Experiment 3 88.43 (5.35) – n.s. (1,25) 0.02 0.89 8e�5 – – – – – –

Experiment 4 91.12 (0.05) – *** (1.65,59.31) 9.41 p < 0.001 0.21 – same-scene vs.

neutral

** 36 3.20 0.009

same-scene

spatially congruent

vs. same-scene

spatially displaced

n.s. 36 �1.19 0.73

neutral vs.

same-scene

spatially displaced

** 36 �3.50 0.004

Results from repeated-measures ANOVA and post hoc t tests evaluating differences in priming test open/closed accuracy between priming condi-

tions. Sig, significance for indicated statistical test; *p < 0.05, **p < 0.01, ***p < 0.001. df, degree(s) of freedom.
ap values after Bonferroni correction.
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predictions, we found a significant effect of priming condition on

response time (LMEmodel: F(2, 3,811.9) = 14.66,p < 0.001,hp
2 =

0.008) (Figure 4B; Table S1), whereby same-scene spatially

congruent primes sped response time compared with neutral

ones (t(36) = �2.11, p = 0.04, d = �0.21, 95% CI [�0.05,

�0.001]), replicating the priming effect observed in experiments

1 and 3. Critically, same-scene spatially displaced trials elicited

slower response times thansame-scenespatially congruent trials

(t(36) =�2.14, p = 0.04, d =�0.28, 95%CI [�0.07,�0.002]), sug-

gesting that theconflict betweenvisual actionandvisual outcome

disrupted memory-based predictions across head turns. Taken

together, these results argue for amechanismbywhichpredicted

content may be mapped to the spatial scaffold of a scene based

on an agents’ action in that environment.

DISCUSSION

Here, we show that memory-based predictions of upcoming,

out-of-sight scene views prime perception of those views across

head turns to enable rapid, ecologically relevant perceptual

judgments. This priming only occurs in familiar scenes, showing

that it depends on memory for the out-of-sight content. Further,

priming is skewed in the direction of planned head turns, under-

scoring its utility for active vision. Based on these results, we

propose that memory-based predictions likely enable us to over-

come our limited field of view by supporting efficient perception

across large-scale visual actions.

Our work advances our understanding of how predictive pro-

cesses influence perception across large-scale visual actions

by showing that memory-based predictions are generated

for upcoming scene views across head turns in immersive envi-

ronments (experiments 1–4). Importantly, we identify evidence of

upcoming scene view prediction in three separate experiments:
126 Current Biology 35, 121–130, January 6, 2025
experiment 1, experiment 3 (valid trials), and experiment 4

showed faster responses to expected (same-scene) scene views

than unexpected (different-scene) or unpredictable (neutral)

ones. Previous studies of predictive vision have primarily used

basic stimuli (e.g., oriented gratings or single objects) to examine

small-scale visual actions like saccades within a single field of

view. In these contexts, others have found evidence for predic-

tive vision in foveal and peripheral vision.12–17 For example,

beforemaking a saccade, the center of gaze becomesmore sen-

sitive to the visual features of the stimulus that the saccade will

bring into view.12 Likewise, across saccades, the appearances

of peripheral objects become biased toward their associated

foveal percepts, which is thought to smooth the transition be-

tween low-acuity peripheral vision and high-acuity foveal

vision.13,14 Interestingly, saccades are necessary to evoke this

predictive bias—biased perception does not occur for percepts

that become associated without a saccade,13 which mirrors our

finding that intended actions modulate the extent of priming

(experiment 3). However, prediction across saccades differs

fundamentally from predictions across head turns: across sac-

cades, information in the periphery can be used to inform predic-

tions,13 whereas head turns often bring new information into the

field of view and should therefore require additional information

to inform predictions. Indeed, our results indicate that, in immer-

sive contexts, memory supports predictions of upcoming scene

views across head turns. Thus, an open question is the degree of

overlap between the cognitive mechanisms underpinning pre-

dictions across saccades (operating within a field of view) vs.

across large-scale visual actions like head turns (operating

across many fields of view).

Our finding that priming occurs across head turns in familiar

(but not unfamiliar) scenes suggests the existence of a mem-

ory-dependent cognitive mechanism that supports efficient



Figure 3. Priming is biased in the direction of

intended head turns

(A) On each trial of experiment 3, participants

saw an arrow indicating a direction to plan a

head turn in, followed by a prime and target.

Arrows were either valid (i.e., correctly indi-

cated the location of the upcoming target) or

invalid.

(B) Median response times for perceptual

judgments across priming conditions in experi-

ment 3 (n = 26) were only faster in same-scene

compared with neutral primes when preceded

by a valid arrow. Connected points represent

the same participant across conditions. * p %

0.05, ** p % 0.01, *** p % 0.001 difference

between median response time for indicated

priming conditions (Bonferroni-corrected paired

t tests unless otherwise noted). LME indicates the interaction between arrow condition and priming condition using a linear mixed effects model.

See also Figure S6, Tables S1 and S2 for additional analysis, and Video S1 for screen videos of training phase and priming test.
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visual perception across head turns. This memory-dependent

mechanism likely differs fundamentally from two known phe-

nomena that occur robustly in response to unfamiliar im-

ages—boundary extension and scene layout extrapola-

tion37–39—which both indicate that out-of-sight information

can be extrapolated from a limited field of view (but see

Shafer-Skelton and Brady40). However, boundary extension

and scene layout extrapolation are inherently different from pre-

dictions across large-scale visual actions like head turns: both

operate only within a small spatial window around the

scene.27,37 Thus, our findings likely complement the cognitive

phenomena of boundary extension or scene layout extrapola-

tion, contributing instead to a growing body of literature

showing that memory is leveraged to proactively support

behavior.8,9,41–45 We hypothesize that this cognitive mecha-

nism, memory-based scene view prediction, could arise from

associations in the brain between scene views sampled from

the same environment during learning.33,34

The present work describes evidence for a predictive process

in which visual predictions of upcoming scene views are gener-

ated to support active vision. Importantly, our results also argue

against the alternative interpretation that prime images elicited

simple motor predictions or response biases (e.g., ‘‘if I turn left,

I’ll press the ‘open’ button’’). Using data from different-scene tri-

als (experiment 1), we examined trials where the prime and target

had matching spatial layouts, such that the prime would evoke

the correct motor plan but the wrong visual prediction (motor-

matched trials). Critically, these trials were no faster than trials

with mismatched layouts (wrong motor plan, wrong visual pre-

diction), indicating that preparing a motor response alone is

not sufficient to account for the same-scene priming effect we

observe across our experiments. Relatedly, though our decision

to exclude trials where participants head-turned before the

target presentation led to a relatively high exclusion rate in exper-

iment 3 (36.5% of trials), this choice also bolsters the likelihood

that the priming effect observed could be attributed to a lingering

mnemonic representation, decoupled from a motor one. Taken

together, our results suggest that participants are predicting

the specific visual content of an upcoming scene view—not

just preparing an open/closed motor response—across head

turns.
An interesting question for future study is the extent to which

attentional shifts and visual predictions interact across large-

scale visual actions. In experiment 3, the arrow cues preceding

the prime image could have caused participants to prepare an

attentional shift in working memory in advance of the head

turn, consistent with past work showing that attentional shifts

precede visual actions.46–48 This likely attention shift aligns

with—and adds to—the idea that visual predictions are prepared

across head turns.

Across two separate studies, we provide evidence that mem-

ory-based predictions are generated for upcoming scene views

across head turns. In these studies, presenting an incongruent

prime view, as in the neutral and different-scene (experiments 1

and 3) conditions, creates a visual discontinuity between the

prime and target image that does not exist in same-scene trials,

where prime and target are contiguous views from the same

scene. Such a discontinuity could slow response times, account-

ing for the response time difference between same-scene and

discontinuous trials in experiments 1 and 3. However, our results

argue against the impact of this potential: we found no difference

in response time between the same-scene vs. neutral or different-

scene conditions in experiment 2 (unfamiliar scenes), which also

contain this visual discontinuity. Thus, the results of experiment

2 suggest that a violation of the predicted (remembered) scene

view, rather than visual discontinuity between the prime and target

images, likely underpins the priming effect observed in this study.

The current paradigm tackles a key challenge for memory-

based predictions during active vision: the fact that perception

and memory often operate in distinct spatial reference frames.49

For example, consider a seated agent who places a cup of coffee

on her desk—centering the cup on her retina—before turning to

her left to work on a computer monitor. For the memory of the

location of the coffee cup to be useful after the agent looks

away, she needs to convert the coffee cup’s position from retino-

topic to spatiotopic coordinates—otherwise, she risks acciden-

tally spilling the coffee while reaching for other items on the desk.

Importantly, because memory-based predictions have primarily

been studied in screen-based contexts,2–4,8,9,50–52 it was previ-

ously unknown whether they are in fact implemented in a spatio-

topic reference frame. Our findings show that memory-based

predictions are mapped to the spatial coordinate frame of the
Current Biology 35, 121–130, January 6, 2025 127



Figure 4. Action dictates primed content

(A) Experiment 4 (n = 37) contained same-scene

spatially displaced trials in which the prime and

target were drawn from the same scene, but the

target was presented 180� opposite its learned

location in 360� space.
(B) Same-scene spatially displaced primes showed

no priming effect relative to neutral. Connected

points represent the same participant across con-

ditions. * p % 0.05 difference between median

response time for indicated priming conditions

(paired t tests).

See also Tables S1 and S2 for additional analysis

and Videos S1 and S2 for screen videos of training

phase and priming test.
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immediate global environment. This aligns with recent VR

studies indicating that objects maintained in immersive working

memory are primarily remembered based on their location in the

environment’s global coordinate frame (rather than on their

egocentric position relative to the viewer during encod-

ing).49,53,54 A noteworthy question is whether memory-based vi-

sual predictions also map on to the broader, global coordinate

frame when agents translate through their environment rather

than simply turning in one discrete location as we have studied

here. This question remains an intriguing one for future study.

Together with our findings, VR studies underscore the role of

memory in supporting ecologically relevant perceptual judg-

ments1,54 and highlight the promise of head-mounted VR as a

tool for studying how perceptual information is represented—

and predicted—during naturalistic, active perception.34,55–57

To conclude, here we developed a novel VR priming paradigm

to investigate the role of memory-based predictions during natu-

ralistic behavior. Our results indicate that memory-based predic-

tions of upcoming scene views enable rapid perceptual judg-

ments across head turns. We propose that memory-based

predictions may be used to overcome our limited field of view

by facilitating visual perception across large-scale visual actions

(head turns and body movements). Future work should aim to

understand how memory-based predictions retain their spatial

structure, perhaps through interplay between the perceptual

and head-direction systems.
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rstudio-desktop/

R Statistical Software R Project www.r-project.org

Contributed R packages Comprehensive R Archive Network
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Unity 2018.4.12f1 Unity https://unity.com

ManageXR ManageXR https://www.managexr.com

Custom-built MATLAB and R code This paper; https://doi.org/10.6084/m9.figshare.

27679719

https://doi.org/10.6084/

m9.figshare.27679719

Other

Oculus Quest 2 Meta https://www.meta.com/quest/

products/quest-2/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

140 participants were recruited across four experiments in this study. Sample size for experiments 1-2 was chosen based on pre-

viouswork34. For experiments 3-4, a power analysis based on Pilot B (see Figure S4) was conducted (power = 0.8, alpha = 0.05, effect

size = 0.56, paired, one-tailed) to determine the sample size. Adult participants were recruited from the local university or the local

community and received payment ($15/hour) or course credit for participation. Due to technical challenges of remote data collection,

age and sex were not recorded for experiment 1, however these participants indicated they were between 18-65 years old during

consent. Experiment 2 (mean age: 22.84 ± 5.09 years) had 15 female and 4male participants, and 1 participant who responded, "Pre-

fer not to say". Experiment 3 (mean age: 20.23 ± 3.94 years) had 16 female and 10male participants. Experiment 4 (mean age: 20.54 ±

2.82 years) had 22 female and 15 male participants. Participants in experiments 2-4 were recruited based on the following criteria: 1)

normal or corrected-to-normal vision 2) no neurological or psychiatric conditions 3) no history of epilepsy. Participants in experiment

1 participated for course credit and completed the experiment remotely from their homes using virtual reality headsets that were

delivered to them in the mail. Participants in experiments 2 and 3 were mixed between remote testing and in-person testing at

the local university in the following amounts: experiment 2: 7 remote, 17 in-person; experiment 3: 4 remote, 42 in-person. Participants

in experiment 4 all participated in person. Remote data was collected to comply with health and safety guidelines during the COVID-

19 pandemic. There was no significant impact of remote versus in-person testing in any of the experiments (Table S3). Written con-

sent was obtained from all participants in accordance with a protocol approved by the local university Institutional Review Board. 32

participants were excluded due to data quality concerns associated with VR data collection (see inclusion criteria section below),

leaving data from 101 participants in the final analyses: 18 in experiment 1, 20 in experiment 2, 26 in experiment 3, and 37 in exper-

iment 4.

METHOD DETAILS

Hardware
This study took place entirely in head-mounted virtual reality (VR). Stimuli were displayed through head-mounted virtual reality

(Oculus Quest 2, resolution 1832x1920 per eye, approximately 97� horizontal by 93� vertical field of view, 120 Hz refresh rate) using

a project designed in Unity (www.unity3d.com) with custom scripts written in C#, and deployed to headsets using mobile device

management softwareManageXR (www.managexr.com). Experimental data was transferred from the HMD to lab servers via custom

data transfer pipeline written in C# and PHP.55
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Stimuli
Stimuli were real-world photospheres downloaded from Google Maps. The number of indoor/outdoor locations was balanced in

each experiment. In all experiments, scenes had a specific layout: each contained an open side (e.g. a field or parking lot) and a

closed side (e.g. a wall or facade) on opposite sides of an initial facing direction (i.e. separated by 180�) (Figure S1). In all experiments,

we counterbalanced the number of [open-left, closed-right] and [closed-left, open-right] scenes.

Procedure
Our study consisted of 4 experiments that each tested a specific question related to memory-based predictions in immersive envi-

ronments. All experiments used a novel, shared priming test inspired by past priming tests of associative memory34 to evaluate the

presence or absence of prediction-based facilitation of an ecologically-relevant perceptual judgment.

This specific open/closed task was chosen because (i) scene expanse judgments (open/closed) are commonly used in the scene

literature58–60 and are thought to be a key representational dimension in scene-selective cortex,61 (ii) because open/closed judg-

ments required participants to allocate their attention broadly to the target scene image, as opposed to searching for a specific object

or detail,62 and (iii) because it was important that prime view alone could not predict the correct answer for the target image, which

ruled out other common scene properties (indoor/outdoor, scene category, manmade/natural), which tend to hold constant across all

views of a scene.

In the sections that follow, we describe the procedure for each experiment.

Experiment 1 Procedure Overview

Experiment 1 was conducted over two consecutive days. On day 1, participants studied the scenes in detail (training phase). Then,

they received instructions on distinguishing between open and closed scene views (Open/Closed Instructions). On day 2, partici-

pants performed the priming test.

Experiment 1 Training Phase

During the training phase on day 1, participants actively viewed 18 immersive photorealistic scenes taken from the area around the

local university’s campus for 20 seconds each (see Figure S1). The open/closed sides of a scene were always positioned to par-

ticipants’ left/right relative to their starting facing direction and the back-most 90� of each scene was occluded to provide a clear

sense of left/center/right in each scene. The occluder was necessary to provide a framework to subsequently probe participants’

memory for the spatial layout of each scene (see Experiment 1 Explicit Memory Test). Participants were asked to ‘‘complete this

study standing at a desk or countertop where you can comfortably reach your keypad.’’ For each scene, participants were in-

structed to ‘‘Look around like you normally would’’. The instructions told participants that there would be a ‘‘gray wall’’ (occluder)

behind them in each scene, and that they only needed to explore what wasn’t blocked by the wall. After viewing each scene, they

indicated whether the scene was familiar in real life via wireless keypad (1=Yes, 2=No, 3=Unsure) (Video S3). One participant in

experiment 1 was not included in the calculation of percent familiarity (Figure S2) because of missing data due to technical chal-

lenges with remote data collection. On day 2, participants completed a refresher training phase in which they viewed the 18 scenes

again for 20 seconds each.

Experiment 1 Open/Closed Instructions

Our primary interest was participants’ ability to make an ecologically-relevant behavioral judgment: was a scene view navigable or

not. To this end, after viewing each scene on day 1, we instructed participants how to distinguish between navigable vs. non-navi-

gable (i.e., open vs. closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments

would be performed in a subsequent part of the experiment. Our specific instructions for distinguishing open versus closed scene

viewswere: "If a snapshot shows an open space or pathway where you could walk into the scene andmove forward freely, that snap-

shot is Open. If a snapshot shows something blocking your way – something that would prevent you fromwalking into the scene and

moving forward freely – that snapshot is Closed." (Video S2). We then showed participants several examples of open versus closed

scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judgment practice tri-

als with feedback.

On day 2, following the refresher training phase, participants were reminded of the instructions for distinguishing open versus

closed scene views using the same wording as on day 1.

Experiment 1 Priming Test

On day 2, participants completed the priming test after the refresher Training and theOpen/Closed instructions reminder. Each trial of

the priming test consisted of four events (Figure 1): 1) Prime image (110� wide, 180� tall) appears directly in front of the participant

(display time: 300 ms); 2) Target image (110� wide, 180� tall) appears to the left or right of the participant (visible in their periphery);

3) Participant turns 90� to face the target image; 4) Participant indicates whether the target is open or closed via button press on a

wireless keypad.

The key manipulation of experiment 1 was controlling whether prime image came from the same scene as the target image. To

encourage participants to use the prime image to predict the upcoming target, more trials contained same-scene primes (50% of

144 total trials) than neutral (25%) or different-scene (25%) primes. The neutral prime for this study was simply a grey screen. The

36 possible target views (drawn from 2 sides of 18 scenes) occurred twice each in the same-scene condition and once each in

the neutral condition. In the different-scene condition, the prime was drawn from each of the 18 possible scene center views two

times; the target was drawn from each of the 36 possible target views one time. The mapping between prime and target views

was randomized during trial order creation, but trial order was constant across participants.
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Before testing, participants completed 5 practice priming test trials with feedback on novel, unstudied scenes. We instructed par-

ticipants to respond as quickly as they knew the answer using a wireless keypad (4=Open, 3=Closed) operated using two fingers on

one hand, and to ‘‘make sure your fingers are ready on the keypad’’. After each trial, the participants’ response time was displayed to

emphasize the importance of responding quickly. Because the open/closed task was relatively simple, and participants were highly

trained to perform it, this study focuses on differences in response time rather than accuracy across conditions.

Experiment 1 Explicit Memory Test

After the priming test, we tested participants’ explicit memory of each scene’s spatial structure. On each trial of the explicit memory

test, participants saw a 45� view from a studied scene directly in front of them. Participants then used a wireless keypad to indicate

whether that view appeared on the Left, Right, or Center of the scene during the training phase (Figure S3). Participants were tested

on each left/right/center view for each studied scene.

Experiment 2 Procedure Overview

Experiment 2 specifically investigated whether priming occurred in unfamiliar environments. For this reason, unlike experiment 1,

experiment 2 required no training phase, and took place on a single day. In experiment 2, participants first learned Open/Closed in-

structions, and then performed the priming test on unfamiliar scenes.

Experiment 2 Open/Closed Instructions

We instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs. closed) scene views in the same

way as in experiment 1. Before receiving these instructions, participants were informed that open/closed judgments would be per-

formed in a subsequent part of the experiment. As in all other experiments, our specific instructions for distinguishing open versus

closed scene views were: "If a snapshot shows an open space or pathway where you could walk into the scene and move forward

freely, that snapshot is Open. If a snapshot shows something blocking your way – something that would prevent you fromwalking into

the scene and moving forward freely – that snapshot is Closed." (Video S2). We then showed participants several examples of open

versus closed scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judg-

ment practice trials with feedback.

Experiment 2 Priming Test

After receiving Open/Closed instructions, participants completed the priming test. Importantly, unlike experiments 1 and 3, this

test took place on novel (unfamiliar) scenes without any training phase. Identical to experiment 1, each trial of the priming test con-

sisted of four events (Figure 1): 1) Prime image (110� wide, 180� tall) appeared directly in front of the participant (display time:

300ms); 2) Target image (110� wide, 180� tall) appeared to the left or right of the participant (visible in their periphery); 3) Participant

turned 90� to face the target image; 4) Participant indicated whether the target was open or closed via button press on a wireless

keypad.

In experiment 2, the key manipulation was using unfamiliar scenes for which participants had no memory. Thus, experiment 2

prime and target images were drawn from diverse locations around the world (Figure S5). To match the condition ratios of exper-

iment 1, prime images were: same-scene primes (50% of 144 total trials), neutral (25%) or different-scene (25%) primes. The

neutral prime for this study was simply a grey screen. The 72 possible target views (drawn from 2 sides of 36 scenes) occurred

once each in the same-scene condition and were randomly split between assignment to either the neutral or different-scene con-

ditions. The mapping between prime and target views was randomized during trial order creation, but trial order was constant

across participants.

Before testing, participants completed 4 practice priming test trials with feedback on novel scenes independent from the test set.

As in all other experiments, we instructed participants to respond as quickly as they knew the answer using a wireless keypad

(4=Open, 3=Closed) operated using two fingers on one hand, and to ‘‘make sure your fingers are ready on the keypad’’. After

each trial, the participants’ response time was displayed to emphasize the importance of responding quickly.

Experiment 3 Procedure Overview

Like experiment 1, experiment 3 was conducted over two consecutive days. On day 1, participants studied the scenes in detail

(training phase). Then, they received instructions on distinguishing between open and closed scene views (Open/Closed Instruc-

tions). On day 2, participants performed the priming test.

Experiment 3 Training Phase

As in experiment 1, during the experiment 3 training phase on day 1, participants actively viewed 18 immersive photorealistic scenes

taken from the area around the local university’s campus for 20 seconds each (see Figure S1). As in all experiments, the open/closed

sides of a scene were always positioned to participants’ left/right relative to their starting facing direction (presentation side counter-

balanced), and the back-most 90� of each scene was occluded to provide a clear sense of left/center/right in each scene. Consistent

with the training phase in experiment 1, participants were asked to ‘‘complete this study standing at a desk or countertop where you

can comfortably reach your keypad." For each scene, participants were instructed to ‘‘Look around like you normally would’’. The

instructions told participants that there would be a ‘‘gray wall’’ (occluder) behind them in each scene, and that they only needed

to explore what wasn’t blocked by the wall. After viewing each scene, they indicated whether the scene was familiar in real life via

wireless keypad (1=Yes, 2=No, 3=Unsure). Three participants in experiment 3 were not included in the calculation of percent famil-

iarity (Figure S2) because of missing data due to technical challenges with remote data collection.

On day 2, participants completed a refresher training phase in which they viewed the 18 scenes again for 20 seconds each.
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Experiment 3 Open/Closed Instructions

As in experiment 1, on day 1, we instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs.

closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments would be per-

formed in a subsequent part of the experiment. Our specific instructions for distinguishing open versus closed scene views were:

"If a snapshot shows an open space or pathway where you could walk into the scene and move forward freely, that snapshot is

Open. If a snapshot shows something blocking your way – something that would prevent you fromwalking into the scene andmoving

forward freely – that snapshot is Closed." (Video S2). We then showed participants several examples of open versus closed scene

views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judgment practice trials with

feedback.

Participants were reminded of the instructions for distinguishing open versus closed scene views on day 2, following the refresher

training phase, using the same wording as on day 1.

Experiment 3 Direction-cued Priming Test

Experiment 3 tested whether priming was skewed in the direction of intended head turns. For this reason, we modified the standard

priming test (used in experiments 1 and 2) to manipulate the anticipated direction needed to turn and face the target image.

The trial sequence in experiment 3 consisted of 5 stages (Figure 3): 1) Participants saw an arrow indicating the direction to plan a

head turn in to see the target image (300 ms display time). On 2/3 of trials, the arrow correctly indicated the direction of the upcoming

target (i.e., was a valid cue), and 1/3 of trials the arrow indicated the incorrect direction (i.e., was invalid. 2). Participants then saw the

prime image (300 ms display time). 3) The target image (110� wide, 180� tall) appeared to the participants’ left or right. 4) Participants

turned 90� to face the target. 5) Participants responded using a button press.

Prime images in experiment 3 were either same-scene or neutral, resulting in four priming conditions: same-scene valid arrow

(50% of 216 trials), neutral valid arrow (16.7%), same-scene invalid arrow (16.7%) and neutral invalid arrow (16.7%). Neutral prime

images were scrambled scenes (32 x 16 grid). The scrambled neutral prime was introduced to better match the amount of visual in-

formation across priming conditions. The 36 possible target views (drawn from 2 sides of 18 scenes) occurred three times each in the

same-scene, valid arrow condition and once each in (i) same-scene, invalid arrow, (ii) different-scene, valid arrow and (iii) different-

scene, invalid arrow conditions. The mapping between prime and target views was randomized during trial order creation, but trial

order was constant across participants.

Before testing, participants completed 6 practice priming test trials with feedback on novel, unstudied scenes.

Experiment 4 Procedure Overview

Like experiments 1 and 3, experiment 4 was conducted over two consecutive days. The key manipulation in experiment 4 was intro-

ducing the ‘‘same-scene spatially displaced’’ condition to assess whether predicted content depended on participants’ actions

within the environment. For clarity, we called the same-scene condition (experiments 1, 2 and 3) ‘‘same-scene spatially congruent’’

in experiment 4. On day 1, participants studied the scenes in detail (training phase). Then, they received instructions on distinguishing

between open and closed scene views (Open/Closed Instructions). On day 2, participants performed the priming test.

Experiment 4 Training Phase

As in experiments 1 and 3, during the experiment 4 training phase on day 1, participants actively viewed 18 immersive photorealistic

scenes taken from the area around the local university’s campus for 20 seconds each (see Figure S1). As in all experiments, the open/

closed sides of a scene were always positioned to participants’ left/right relative to their starting facing direction and the back-most

90� of each scene was occluded to provide a clear sense of left/center/right in each scene. Participants were asked to ‘‘complete this

study standing at a desk or countertop where you can comfortably reach your keypad." For each scene, participants were instructed

to ‘‘Look around like you normally would’’. The instructions told participants that there would be a ‘‘gray wall’’ (occluder) behind them

in each scene, and that they only needed to explore what wasn’t blocked by the wall. After viewing each scene, they indicated

whether the scene was familiar in real life via wireless keypad (1=Yes, 2=No, 3=Unsure). On day 2, participants completed a refresher

training phase in which they viewed the 18 scenes again for 20 seconds each.

Experiment 4 Open/Closed Instructions

As in experiment 1, on day 1, we instructed participants how to distinguish between navigable vs. non-navigable (i.e., open vs.

closed) scene views. Before receiving these instructions, participants were informed that open/closed judgments would be per-

formed in a subsequent part of the experiment. As in all other experiments, our specific instructions for distinguishing open versus

closed scene views were: "If a snapshot shows an open space or pathway where you could walk into the scene and move forward

freely, that snapshot is Open. If a snapshot shows something blocking your way – something that would prevent you fromwalking into

the scene and moving forward freely – that snapshot is Closed." (Video S2). We then showed participants several examples of open

versus closed scene views in novel, unstudied scenes. After viewing these examples, participants completed 6 open/closed judg-

ment practice trials with feedback.

Experiment 4 Priming Test

On day 2, participants completed the priming test after the refresher Training and theOpen/Closed instructions reminder. Each trial of

the priming test consisted of four events (Figure 1): 1) Prime image (110� wide, 180� tall) appeared directly in front of the participant

(display time: 300ms); 2) Target image (110� wide, 180� tall) appeared to the left or right of the participant (visible in their periphery); 3)

Participant turned 90� to face the target image; 4) Participant indicated whether the target was open or closed via button press on a

wireless keypad.
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In addition to same-scene and neutral conditions, experiment 4 introduced the same-scene spatially displaced priming condition,

in which targets were drawn from the same scene as the prime, but were presented 180� their learned spatial location. As in exper-

iment 1, to encourage participants to use the prime image to predict the upcoming target, more trials contained same-scene primes

(50% of 144 total trials) than neutral (25%) or same-scene spatially displaced (25%) primes. The neutral prime for this study was a

grey screen. The 36 possible target views (drawn from 2 sides of 18 scenes) occurred twice each in the same-scene condition and

once each in the neutral condition. The mapping between prime and target views was randomized during trial order creation, but trial

order was constant across participants.

Before testing, participants completed 5 practice priming test trials with feedback on novel, unstudied scenes. We instructed par-

ticipants to respond as quickly as they knew the answer using a wireless keypad (4=Open, 3=Closed) operated using two fingers on

one hand, and to ‘‘make sure your fingers are ready on the keypad’’. After each trial, the participants’ response time was displayed to

emphasize the importance of responding quickly.

Experiment 4 Explicit Memory Test

As in experiment 1, after the priming test, we tested participants’ explicit memory of each scene’s spatial structure. On each trial of

the explicit memory test, participants saw a 45� view from a studied scene directly in front of them. Participants then used a wireless

keypad to indicate whether that view appeared on the Left, Right, or Center of the scene during the training phase (Figure S3). Par-

ticipants were tested on each left/right/center view for each studied scene.

QUANTIFICATION AND STATISTICAL ANALYSIS

We analyzed data using custom MATLAB scripts (www.mathworks.com) and custom R scripts.

Inclusion Criteria
Due to the novelty of the VR testing environment for remote testing, we applied a stringent trial-level inclusion criteria to ensure high

data quality and to ensure that data from experiments could be equated. For instance, in all experiments, participants were required

to view the prime for its entire duration (300ms) before turning to the target. However, unlike experiments 1, 2, and 4, the arrow cue in

experiment 3 enabled participants to anticipate the upcoming location of the target, which led to more trial-level exclusions caused

by participants turning before the end of the prime (despite instructions, as in all experiments, to wait for target onset). This tradeoff –

stringent inclusion criteria over more tailored task instructions in experiment 3 – was critical for ensuring that participants received

comparable instructions across experiments.

After applying these criteria, data were included in the following percentages per included participant: experiment 1: M = 74.92%,

SD = 11.90%; experiment 2: 75.03%, SD = 7.07%; experiment 3: M = 79.20%, SD = 7.01%; experiment 4: M = 72.43%, SD = 8.56%.

Response time data from a priming test trial was excluded from analysis if the open/closed response was:

1. incorrect;

2. faster than 250ms, potentially indicating insufficient time spent to perform the judgment accurately;

3. outside of the participants’ mean response time ± 3 standard deviations.

Trials were also excluded if:

1. the headset failed to transfer head-orientation data;

2. the participant turned before at least 50% of the prime image was within view;

3. the participant did not turn far enough toward the target to view at least 50% of the target scene segment;

4. the participant turned the wrong way (i.e. away from the target image) by more than 15 degrees following the prime (experi-

ments 1,2 and 4).

In experiment 3, in trials where participants turned the wrong way (i.e. away from the target image) by more than 15 degrees:

1. If the participant corrected their head turn to the correct direction, the timepoint at which the participant corrected their head

turn served as the start of the corrected trial.

2. If the timepoint at which the participant corrected their head turn could not be identified, the trial was excluded.

Finally, for a given participant, if more than 50% of trials in any priming condition were excluded or if their median response time

exceeded± 2 standard deviations from the group median, we removed that participant from data analysis entirely.

Statistics
For all experiments, we calculated the median response time for each priming test condition. Response times were calculated from

the appearance of the target and included the time taken to turn to face the target.

For each priming test, we used linear mixed effects models to evaluate the effect of priming condition on response time using the

‘lmerTest’63 package in R. This approachwas selected to reduce the opportunity for just a subset of scenes to account for the priming

effect. In each model, we included priming condition as a fixed effect and participant and target scene identity as random effects
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(intercepts). Raw response times were transformed64,65 (inverse square root) to ensure normality of residuals and homogeneity of

variance, confirmed using ‘check model’ in the ‘performance’ package in R.66 Raw (i.e. untransformed) response times yielded

the same pattern of results as the transformed data in all LMEs (Table S1). Likewise, pairwise t tests run on median transformed

response times yielded the same pattern of results as median raw response times (Table S2). To evaluate the extent of priming in

experiment 1 versus experiment 2, we added experiment as a fixed effect to our model. Where appropriate, we used two-tailed, pair-

wise Bonferroni-corrected t tests for post-hoc tests.
e6 Current Biology 35, 121–130.e1–e6, January 6, 2025
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